DOI QR코드

DOI QR Code

RC 구조물 높이와 해안가 거리를 고려한 염해에 대한 내구수명 평가

Service Life Evaluation Considering Height of RC Structures and Distance from Sea Shore

  • 오경석 (한남대학교 건설시스템공학과) ;
  • 김영준 (한남대학교 건설시스템공학과) ;
  • 이성희 (한남대학교 건설시스템공학과) ;
  • 권성준 (한남대학교 건설시스템공학과)
  • 투고 : 2016.06.02
  • 심사 : 2016.06.14
  • 발행 : 2016.06.30

초록

콘크리트 구조물의 내구수명평가는 주로 해석 변수의 변동성을 고려하지 않은 결정론적 방법과 변동성을 고려한 확률론적 방법이 사용되고 있다. 본 연구에서는 해안으로부터의 거리와 높이에 따른 내구수명 평가를 위해 일본토목학회에서 제안한 해안으로부터 거리에 따른 표면염화물량과 실태조사를 통한 높이에 따른 표면염화물량을 적용하였다. Fick's $2^{nd}$ Law에 기반을 둔 Life-365를 이용한 결정론적 방법과 MCS을 이용한 확률론적 방법을 수행하여 내구수명을 평가하였다. 평가결과 확률론적 방법이 결정론적 방법보다 낮은 내구수명이 평가되었으며, 이는 기존에 연구된 확산계수, 피복두께, 표면염화물량 등의 변동계수뿐 아니라 낮은 목표내구적 파괴확률을 설정하였기 때문이다. 결정론적 방법에서는 해안가 250m 이내에서는 높이 60m 이상에서, 500m에서는 염해에 의한 피해를 고려하지 않아도 되는 것으로 평가되었다. 또한 확률론적인 방법에서는 전 구간에서 60m 이상의 지역, 250m 이내에서는 40m 이상의 구조물은 염해에 대하여 안전한 것으로 평가되었다.

For an evaluation of service life in RC(Reinforced Concrete) structures, deterministic method and probabilistic method considering random variables of design parameters are usually adopted. In the work, surface chloride contents which vary with distance from sea shore and height are investigated from the previous research literature surveys, and they are considered for service life estimation. Through the analysis, the probabilistic method shows much lower results, which is due to variations of design parameters and very low intended durability failure. In the deterministic method, the structures within 250m and higher than 60m are evaluated to be free from chloride attack. In the probabilistic method, those higher than 60m in all the region and higher than 40m and 250m from sea shore are evaluated to satisfy the service life.

키워드

참고문헌

  1. Broomfield, J.P. (1997). Corrosion of Steel in Concrete: Understanding, Investigation and Repair, London, E&FN, 1-15.
  2. CEB Task Group 5.1. 5.2. (1997). New Approach to Durability Design, CEB, Sprint-Druck, Stuttgart, 29-43.
  3. Cheong, H.M., Ahn, T.S., Lee, B.D. (2005). Surface chloride content of concrete in domestic west and south coast, Journal of the Korean Society of Civil Engineers, 173-176 [in Korean].
  4. DuraCrete-Final Technical Report. (2000). Probabilistic Performance Based Durability Design of Concrete Structures, Document BE95-1347/R17, European Brite-Euram III, CUR, Netherlands.
  5. EN 1991. (2000). Eurocode 1: Basis of Design and Actions on Structures, CEN.
  6. Irina, S.O., Dubravka, B., Dunja, M. (2010). Evaluation of service life design models on concrete structures exposed to marin environment, Materials and Structures, 43(10), 1397-1412. https://doi.org/10.1617/s11527-010-9590-z
  7. Japan Society of Civil Engineering. (2002). Concrete Library 109: Proposal of the Format for Durability Database of Concrete.
  8. JSCE-Concrete Committee. (2007). Standard Specification for Concrete Structures.
  9. Kim, J.S., Jung, S.H., Kim, J.H., Lee, K.W., Bae, S.H. (2006). Probability-based durability analysis of concrete structures under chloride attack environment, Journal of the Korea Concrete Institute, 18(2), 239-248 [in Korean]. https://doi.org/10.4334/JKCI.2006.18.2.239
  10. Korea Concrete Institute. (2009). Concrete Standard Specification- Durability Part [in Korean].
  11. Kwon, S.J., Na, U.J., Park, S.S., Jung, S.H. (2009). Service life prediction of concrete wharves with early-aged crack: probabilistic approach for chloride diffusion, Structure and Safety, 31(1), 75-83. https://doi.org/10.1016/j.strusafe.2008.03.004
  12. Kwon, S.J., Song, H.W., Byun, K.J. (2005). Durability design for cracked concrete structures exposed to carbonation using stochastic approach, Journal of the Korean Society of Civil Engineers, 25(5), 741-750 [in Korean].
  13. Lee, S.H. (2012). Experimental study on the relationship between time-dependent chloride diffusion coefficient and compressive strength, Journal of the Korea Concrete institute, 24(6), 715-726 [in Korean]. https://doi.org/10.4334/JKCI.2012.24.6.715
  14. Maekawa, K., Ishida, T., Kishi, T. (2003). Multi-scale modeling of concrete performance, Journal of Advanced Concrete Technology, 1(2), 91-126. https://doi.org/10.3151/jact.1.91
  15. Park, S.S., Kwon, S.J., Jung, S.H. (2012). Analysis technique for chloride penetration in cracked concrete using equivalent diffusion and permeation, Construction and Building Materials, 29(2), 183-192. https://doi.org/10.1016/j.conbuildmat.2011.09.019
  16. Poulsen, E. (1993). On a Model of Chloride Ingress into Concrete, Nordic Mini Seminar-Chloride Transport, Department of Building Materials, Gouthenburg.
  17. RILEM. (1994). Durability Design of Concrete Structures, Report of RILEM Technical Committee 130-CSL, E&FN, 28-52.
  18. Song, H.W., Pack, S.W., Ann, K.Y. (2009). Probabilistic assessment to predict the time to corrosion of steel in reinforced concrete tunnel box exposed to sea water, Construction and Building Materials, 23(10), 3270-3278. https://doi.org/10.1016/j.conbuildmat.2009.05.007
  19. Thomas, M.D.A,, Bentz, E.C. (2002). Computer Program for Predicting the Service Life and Life-Cycle Costs of Reinforced Concrete Exposed To Chlorides, Life365 Manual, SFA, 2-28.
  20. Thomas, M.D.A., Bamforth, P.B. (1999). Modeling chloride diffusion in concrete: effect of fly ash and slag, Cement and Concrete Research, 29(4), 487-495. https://doi.org/10.1016/S0008-8846(98)00192-6