초록
오늘날 우리 주변에는 규모를 가늠할 수 없을 정도로 많은 정보와 데이터가 생산되는 '빅데이터(Big Data)'의 시대가 도래 하였으며, 그 중요성이 날로 커지고 있다. 교통분야에서는 전통적인 통행기반교통모형(Trip-Based Model)인 4단계 교통수요추정법의 한계가 드러나고 있으며, 활동기반교통모형(Activity-Based Model)을 이용한 수요 추정 방법이 교통계획에 새로운 패러다임으로 떠오르고 있다. 교통은 사람이나 물류의 공간상의 시간적 이동을 의미한다고 봤을 때 공간데이터와 밀접한 관련이 있다. 따라서 공간정보를 포함하고 있는 SNS를 대상으로 시계열적 공간정보를 추출하고, 이를 현재의 통행기반교통모형(Trip-Based Model) O/D와 비교 분석하여 그 특성을 파악하고 유용성을 검증하였다. 또한, 활동기반교통모형(Activity-Based Model)의 분석자료를 구축하여 교통시뮬레이터 프로그램을 이용해 시뮬레이션을 수행하고 그 결과를 고찰하였다. 연구결과 다수의 활동기반 교통모형 분석자료를 구축할 수 있었으며, 이번 연구를 통해 교통분야 빅데이터 활용의 기술적 한계를 극복할 수 있는 가능성을 확인하였고, 향후 발전방향을 모색하는 기회가 되었다.
The era of Big Data has come and the importance of Big Data has been rapidly growing. The part of transportation, the Four-Step Travel Demand Model(FSTDM), a traditional Trip-Based Model(TBM) reaches its limit. In recent years, a traffic demand forecasting method using the Activity-Based Model(ABM) emerged as a new paradigm. Given that transportation means the spatial movement of people and goods in a certain period of time, transportation could be very closely associated with spatial data. So, I mined Spatial Big Data from SNS. After that, I analyzed the character of these data from SNS and test the reliability of the data through compared with the attributes of TBM. Finally, I built a database from SNS for the operation of ABM and manipulate an ABM simulator, then I consider the result. Through this research, I was successfully able to create a spatial database from SNS and I found possibilities to overcome technical limitations on using Spatial Big Data in the transportation planning process. Moreover, it was an opportunity to seek ways of further research development.