DOI QR코드

DOI QR Code

활동기반 교통모형 분석자료 구축을 위한 소셜네트워크 공간빅데이터 활용방안 연구

A Study on the Application of Spatial Big Data from Social Networking Service for the Operation of Activity-Based Traffic Model

  • 김승현 (서울시립대학교 교통공학과) ;
  • 김주영 (서울시립대학교 도시과학연구원 융합도시연구센터) ;
  • 이승재 (서울시립대학교 교통공학과)
  • 투고 : 2016.04.12
  • 심사 : 2016.07.04
  • 발행 : 2016.08.31

초록

오늘날 우리 주변에는 규모를 가늠할 수 없을 정도로 많은 정보와 데이터가 생산되는 '빅데이터(Big Data)'의 시대가 도래 하였으며, 그 중요성이 날로 커지고 있다. 교통분야에서는 전통적인 통행기반교통모형(Trip-Based Model)인 4단계 교통수요추정법의 한계가 드러나고 있으며, 활동기반교통모형(Activity-Based Model)을 이용한 수요 추정 방법이 교통계획에 새로운 패러다임으로 떠오르고 있다. 교통은 사람이나 물류의 공간상의 시간적 이동을 의미한다고 봤을 때 공간데이터와 밀접한 관련이 있다. 따라서 공간정보를 포함하고 있는 SNS를 대상으로 시계열적 공간정보를 추출하고, 이를 현재의 통행기반교통모형(Trip-Based Model) O/D와 비교 분석하여 그 특성을 파악하고 유용성을 검증하였다. 또한, 활동기반교통모형(Activity-Based Model)의 분석자료를 구축하여 교통시뮬레이터 프로그램을 이용해 시뮬레이션을 수행하고 그 결과를 고찰하였다. 연구결과 다수의 활동기반 교통모형 분석자료를 구축할 수 있었으며, 이번 연구를 통해 교통분야 빅데이터 활용의 기술적 한계를 극복할 수 있는 가능성을 확인하였고, 향후 발전방향을 모색하는 기회가 되었다.

The era of Big Data has come and the importance of Big Data has been rapidly growing. The part of transportation, the Four-Step Travel Demand Model(FSTDM), a traditional Trip-Based Model(TBM) reaches its limit. In recent years, a traffic demand forecasting method using the Activity-Based Model(ABM) emerged as a new paradigm. Given that transportation means the spatial movement of people and goods in a certain period of time, transportation could be very closely associated with spatial data. So, I mined Spatial Big Data from SNS. After that, I analyzed the character of these data from SNS and test the reliability of the data through compared with the attributes of TBM. Finally, I built a database from SNS for the operation of ABM and manipulate an ABM simulator, then I consider the result. Through this research, I was successfully able to create a spatial database from SNS and I found possibilities to overcome technical limitations on using Spatial Big Data in the transportation planning process. Moreover, it was an opportunity to seek ways of further research development.

키워드

참고문헌

  1. Kim J. J., Shin I. S. and Han K. J.(2013), "Spatial Big Data," Surveying & Mapping Magazine, pp.44-51.
  2. Kim T. J.(2012), "Application of Activitybased Transport Simulation Model to the Gangnam-gu Area," University of seoul.
  3. Seo T. W.(2012), "A Study of Real-time Disaster Information Extraction and Display using the Mash-up based on SNS," Pukyong National University.
  4. Park J. H.(2013), "A study on the Applicability of SNS Data for the Urban Policy Indicator," Ewha Womans University.
  5. Lee J. Y.(2014), "Development of a spatial information extraction and representation systems utilizing social media as spatial big data," University of seoul.
  6. 近藤勝直(1987), "交通行動分析" 光洋書房.
  7. Adler T. and Ben-Akiva M. E.(1979), "A Theoretical and Empirical Model of Trip Chaining Behaviorm," Transport Research 13B, pp.243-257.
  8. Currie G. and Delbosc A.(2011), "Exploring the trip chaining behaviour of public transport users in Melbourne," Transport Policy, vol. 18, Issue 1, pp.204-210. https://doi.org/10.1016/j.tranpol.2010.08.003
  9. Yoon D. S.(1997), "Analysis of Urban Workers' Travel Pattern Choice Behavior," The Korea Transport Institute, Journal of Transportation Research, vol. 15, no. 4, pp.35-51.
  10. Choo S. H., Kwon S. N. and Kim D. H.(2008), "Exploring Characteristics on Trip Chaining : the Case of Seoul," The Korea Transport Institute, Journal of Transportation Research, vol. 26, no. 4, pp.87-97.
  11. Bin M. Y.(2011), "A Study on Trip Chain Typed Selection Behavior," The Korea Transport Institute, Journal of Transportation Research, vol. 29, no. 3, pp.7-19.
  12. McNally. M. G.(1999), "Activity-based forecasting model incorporating GIS," Geographical Systems, pp.163-187.
  13. Kim S. K.(1994), "Current state and direction of study of activity focused model," memo.
  14. Atizaz A.(2015), "Activity-based Modeling Using Smart Card Data," University of seoul.
  15. Metropolitan transportation Authority(2012), "Passenger origin-destination trip volume expansion and future demand forecasting cowork,"
  16. Kim J. Y.(2014), "(A)simulated annealing algorithm for the activity based travel demand modelling," University of seoul.
  17. Viktor M. S. and Kenneth N. C.(2013), "BIG DATA : A Revolution That Will Transform How We Live, Work, and Think".