DOI QR코드

DOI QR Code

Recovery Pattern and Seasonal Dynamics of Kelp Species, Ecklonia cava Population Formed Following the Large-scale Disturbance

대규모 교란현상 후 형성된 대형갈조류 감태(Ecklonia cava) 개체군의 계절적 변동 및 회복 양상

  • KIM, SANGIL (Estuarine & Coastal Ecology Laboratory, Department of Marine Life Sciences, Jeju National University) ;
  • KANG, YUN HEE (Department of Earth and Marine Sciences, Jeju National University) ;
  • KIM, TAE-HOON (Department of Earth and Marine Sciences, Jeju National University) ;
  • PARK, SANG RUL (Estuarine & Coastal Ecology Laboratory, Department of Marine Life Sciences, Jeju National University)
  • 김상일 (제주대학교 해양생명과학과) ;
  • 강윤희 (제주대학교 지구해양과학과) ;
  • 김태훈 (제주대학교 지구해양과학과) ;
  • 박상률 (제주대학교 해양생명과학과)
  • Received : 2015.10.30
  • Accepted : 2016.06.20
  • Published : 2016.08.31

Abstract

Seasonal dynamics of kelp forest-forming algae, Ecklonia cava population formed following the large-scale disturbance by Typhoon 'Bolaven' in August 2012 were investigated in Jeju Island, Korea. Morphological characteristics, recruits density, mortality rate, total density and biomass were monitored bimonthly from June 2013 to June 2015. Total and longest blade lengths, and individual weight of E. cava showed distinct seasonal trends. Stipe length increased from winter to spring, but did not show increase or reduced from summer to autumn. This indicates that morphological characteristics of E. cava are mainly affected by the change of blades. The optimal temperature for E. cava growth was about $15-18^{\circ}C$ during winter to spring while the growths were inhibited at the water temperature above $20^{\circ}C$ during summer. E. cava exhibited very low recruitment during spring-summer. However, high recruitment was observed on April 2015 when canopy cover was very low due to low density. This indicates that recruitment of E. cava was controlled not by seasonal effects but by physical factors such as canopy and space. The mortality rate of juvenile plants was highest due to their unstable settlement. By June 2015, 34 months after the disturbances, E. cava was almost recovered to the pre-disturbance population size structure. These results suggest that recovery of kelp forest following the large-scale disturbance requires a considerable period of time (more than three years). This study should provide valuable ecological information on management, restoration and protection of kelp species.

대규모 교란현상 이후 형성된 대형갈조류 감태 개체군의 계절적 변동과 회복양상을 이해하기 위해서 감태의 형태학적 특성, 가입, 사망률, 밀도와 생물량을 2013년 6월부터 2015년 6월까지 조사하였다. 감태의 전체 길이, 가장 긴 측엽의 길이와 개체당 무게는 뚜렷한 계절적 경향성을 보였다. 줄기부의 길이는 겨울부터 봄까지 증가하였으나, 여름부터 가을까지는 변화가 없었다. 이러한 결과는 감태의 형태적 변화가 주로 엽상부의 변화에 의해 나타난다는 것을 의미한다. 감태의 성장은 수온이 $15{\sim}18^{\circ}C$인 겨울부터 봄까지 매우 활발하게 일어나지만, $20^{\circ}C$ 이상의 수온에서는 저해되는 것으로 나타났다. 가입은 실험이 진행되는 기간 동안 봄부터 여름에 걸쳐 매우 낮았다. 그러나 2015년 4월 생육밀도의 감소로 인해 감태의 피도가 매우 낮아진 시점에 대량의 가입이 발생하였으며, 이것은 감태의 가입이 계절적 요인 보다는 공간과 차광효과 같은 물리적 요인에 의해 조절된다는 것을 시사한다. 어린 개체는 부착기질의 불안정성으로 인해 매우 높은 사망률을 보였다. 태풍 '볼라벤'에 의한 교란 이후 34개월이 되는 2015년 6월에 이르러 개체군의 구조가 교란 이전 수준으로 회복되었다. 따라서 대규모 교란현상 이후 감태 개체군이 교란 이전의 개체군 구조로 회복되는 데에는 3년 이상의 시간이 소요되는 것으로 판단된다. 이 연구는 해중림을 구성하는 대형갈조류의 관리, 복원 및 보호 전략을 수립하는데 매우 귀중한 생태학적 자료를 제공할 것이다.

Keywords

References

  1. Ang, P.O., 1991. Age- and size-dependent growth and mortality in a population of Fucus distichus. Mar. Ecol. Prog. Ser., 78: 173-187. https://doi.org/10.3354/meps078173
  2. Arenas, F. and C. Fernandez, 2000. Size structure and dynamics in a population of Sargassum muticum (Phaeophyceae). J. Phycol., 36: 1012-1020. https://doi.org/10.1046/j.1529-8817.2000.99235.x
  3. Bolton, J.J. and R.J. Anderson, 1994. Ecklonia. In: Biology of economic algae, edited by Akatsuka, I., SPB Academic Publishing, The Hague, pp. 385-406.
  4. Carnell, P. and M. Keough, 2014. Spatially variable synergistic effects of disturbance and additional nutrients on kelp recruitment and recovery. Oecologia, 175: 409-416. https://doi.org/10.1007/s00442-014-2907-9
  5. Caswell, H., 1989. Matrix population models: construction, analysis, and interpretation. Sinauer, Sunderland, Massachusetts, p. 328.
  6. Connell, J.H., 1978. Diversity in tropical rain forests and coral reefs. Science, 199: 1302-1310. https://doi.org/10.1126/science.199.4335.1302
  7. Dayton, P.K., V. Currie, T. Gerrodette, B.D. Keller, R. Rosenthal and D.V. Tresca, 1984, Patch dynamics and stability of some California kelp communities. Ecol. Monogr., 54: 253-289. https://doi.org/10.2307/1942498
  8. Dayton, P.K., M.J. Tegner, R.E. Parnell and P.B. Edwards, 1992. Temporal and spatial patterns of disturbance and recovery in a kelp forest community. Ecol. Monogr., 62: 421-445. https://doi.org/10.2307/2937118
  9. Deysher, L.E. and T.A. Dean, 1986. In situ recruitment of sporophytes of the giant kelp, Macrocystis pyrifera (L.) C.A. Agardh: effects of physical factors. J. Exp. Mar. Biol. Ecol., 103: 41-63. https://doi.org/10.1016/0022-0981(86)90131-0
  10. Duarte, P. and J.G. Ferreira, 1997. A model for the simulation of macroalgal population dynamics and productivity. Ecol. Model., 98: 199-214. https://doi.org/10.1016/S0304-3800(96)01915-1
  11. Dudgeon, S. and P.S. Petraitis, 2005. First year demography of the foundation species, Ascophyllum nodosum, and its community implications. Oikos, 109: 405-415. https://doi.org/10.1111/j.0030-1299.2005.13782.x
  12. Easterling, D.R., G.A. Meehl, C. Parmesan, S.A. Changnon, T.R. Karl and L.O. Mearns, 2000. Climate extremes: observations, modeling, and impacts. Science, 289: 2068-2074. https://doi.org/10.1126/science.289.5487.2068
  13. Ebeling, A.W., D.R. Laur and R.J. Rowley, 1985. Severe storm disturbances and reversal of community structure in a southern California kelp forest. Mar. Biol., 84: 287-294. https://doi.org/10.1007/BF00392498
  14. Edwards, M.S., 1998. Effects of long-term kelp canopy exclusion on the abundance of the annual alga Desmarestia ligulata (Light F). J. Exp. Mar. Biol. Ecol., 228: 309-326. https://doi.org/10.1016/S0022-0981(98)00046-X
  15. Graham, M.H., 2004. Effects of local deforestation on the diversity and structure of southern California giant kelp forest food webs. Ecosystems, 7: 341-357. https://doi.org/10.1007/s11252-005-6834-8
  16. Graham, M.H., C. Harrold, S. Lisin, K. Light, J.M. Watanabe and M.S. Foster, 1997. Population dynamics of giant kelp Macrocystis pyrifera along a wave exposure gradient. Mar. Ecol. Prog. Ser., 148: 269-279. https://doi.org/10.3354/meps148269
  17. Graham, L.E. and L.W. Wilcox, 2000. Algae. Prentice Hall, Upper Saddle River, NJ, 640 pp.
  18. Haroun, R., Y. Yokohama and Y. Aruga, 1989. Annual growth cycle of the brown algal Ecklonia cava in central Japan. Sci. Mar., 53: 349-356.
  19. Hatcher, B.G., H. Kirkman and W.F. Wood, 1987. Growth of the kelp Ecklonia radiata near the northern limit of its range in Western Australia. Mar. Biol., 95: 63-73. https://doi.org/10.1007/BF00447486
  20. Kang, D-H., J.I. Song and K-S. Choi, 2005. Image analysis of typhoon impacts on soft coral community at Munseom in Jeju, Korea. Ocean. Polar. Res., 27: 25-34. https://doi.org/10.4217/OPR.2005.27.1.025
  21. Kang, R.S., K.S. Won, K.P. Hong and J.M. Kim, 2001. Population studies on the kelp Ecklonia cava and Eisenia bicylclis in Dokdo, Korea. Algae, 16: 209-215.
  22. Kim, N.G. and J.S. Yoo, 2003. Structure and function of submarine forest 2. Population dynamics of Ecklonia stolonifera as a submarine forest-forming component. Algae, 18: 295-300. https://doi.org/10.4490/ALGAE.2003.18.4.295
  23. Kim, S., Y.H. Kang, C.J. Choi, N.-I. Won, I.-S. Seo, H.J. Lee, S. Jung and S.R. Park, 2014. Effects of intensity and seasonal timing of disturbances on a rocky intertidal benthic community on the southern coast of Korea. Ecol. Res., 29: 421-431. https://doi.org/10.1007/s11284-014-1134-5
  24. Kirkman, H., 1981. The first year in the life history and the survival of the juvenile marine macrophyte, Ecklonia radiata (Turn.) J. Agardh. J. Exp. Mar. Biol. Ecol., 55: 243-254. https://doi.org/10.1016/0022-0981(81)90115-5
  25. Ko, Y.W., G.H. Sung, C.H. Yi, H.H. Kim, D.M. Choi, Y.D. Ko, W.J. Lee, H-B. Koh, J.H. Oak, I.K. Chung and J.H. Kim, 2008. Temporal variations of seaweed biomass in Korean coasts: Munseom, Jeju Island. Algae, 23: 295-300. https://doi.org/10.4490/ALGAE.2008.23.4.295
  26. Levitt, G.J., R.J. Anderson, C.J.T. Boothroyd and F.A. Kemp, 2002. The effects of kelp harvesting on its regrowth and the understorey benthic community at Danger Point, South Africa, and a new method of harvesting kelp fronds. S. Afr. J. Mar. Sci., 24: 71-85. https://doi.org/10.2989/025776102784528501
  27. Mabin, C.J., P.E. Gribben, A.M. Fischer and J.T. Wright, 2013. Variation in the morphology, reproduction and development of the habitat-forming kelp Ecklonia radiata with changing temperature and nutrients. Mar. Ecol. Prog. Ser., 483: 117-131. https://doi.org/10.3354/meps10261
  28. Maegawa, M., Y. Yokohama and Y. Aruga, 1987. Critical light conditions for young Ecklonia cava and Eisenia bicyclis with reference to photosynthesis. Hydrobiologia, 151/152: 447-445. https://doi.org/10.1007/BF00046166
  29. Meehl, G.A., T.F. Stocker, W.D. Collins, P. Friedlingstein, A.T. Gaye, J.M. Gregory, A. Kitoh, R. Knutti, J.M. Murphy, A. Noda, S.C.B. Raper, I.G. Watterson, A.J. Weaver and Z.C. Zhao, 2007. Global climate projections. In: Climate change 2007: The Physical science basis. contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, edited by Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller, Cambridge University Press, Cambridge, pp. 747-845.
  30. Min H.S. and C.-H. Kim, 2006. Interannual variability and long-term trend of coastal sea surface temperature in Korea. Ocean. Polar. Res., 28: 415-423. https://doi.org/10.4217/OPR.2006.28.4.415
  31. Nyberg, C.D. and I. Wallentinus, 2005. Can species traits be used to predict marine macroalgal introduction? Biol. Invasion., 12: 3081-3092.
  32. Reed, D.C. and M.S. Foster, 1984. The effects of canopy shading on algal recruitment and growth in a giant kelp forest. Ecology, 65: 937-948. https://doi.org/10.2307/1938066
  33. Reed, D.C., B.R. Kinlan, P.T. Raimondi, L. Washburn, B. Gaylord and P.T. Drake, 2006. A metapopulation perspective on patch dynamics and connectivity of giant kelp. In: Marine metapopulations, edited by Kritzer, J.P. and P.F. Sale. Academic Press, San Diego, pp. 353-386.
  34. Reed, D.C., A. Rassweiler, M.H. Carr, K.C. Cavanaugh, D.P. Malone and D.A. Siegel, 2011. Wave disturbance overwhelms top-down and bottom-up control of primary production in California kelp forests. Ecology, 92: 2108-2116. https://doi.org/10.1890/11-0377.1
  35. Reed, D.C., S.C. Schroeter and P.T. Raimondi, 2004. Spore supply and habitat availability as sources of recruitment limitation in the giant kelp Macrocystis pyrifera (Phaeophyceae). J. Phycol., 40: 275-284. https://doi.org/10.1046/j.1529-8817.2004.03119.x
  36. Rho, H.K. and K. Kim, 1983. Variations of sea surface temperature between Jeju and Mogpo and between Jeju and Wando. J. Kor. Soc. Oceanogr., 18: 64-72.
  37. Rivera, M. and R. Scrosati, 2006. Population dynamics of Sargassum lapazeanum (Fucales, Phaeophyta) from the Gulf of California, Mexico. Phycologia, 45: 178-189. https://doi.org/10.2216/05-47.1
  38. Rothman, M.D., R.J. Anderson and A.J. Smit, 2006. The effects of harvesting of the South African kelp (Ecklonia maxima) on kelp population structure, growth rate and recruitment. J. Appl. Phycol., 18: 335-341. https://doi.org/10.1007/s10811-006-9036-8
  39. Schiel, D.R. and M.S. Foster, 2006. The population biology of large brown seaweeds: ecological consequences of multiphase life histories in dynamic coastal environments. Annu. Rev. Ecol. Evol. Syst., 37: 343-372. https://doi.org/10.1146/annurev.ecolsys.37.091305.110251
  40. Schiel, D.R. and G.A. Thompson, 2012. Demography and population biology of the invasive kelp Undaria pinnatifida on shallow reefs in southern New Zealand. J. Exp. Mar. Biol. Ecol., 434: 25-33.
  41. Scrosati, R., 2001. Population dynamics of Caulerpa sertularioides (Chlorophyta: Bryopsidales) from Baja California, Mexico, during El Nino and La Nina years. J. Mar. Biol. Assoc. UK., 81: 721-726. https://doi.org/10.1017/S0025315401004520
  42. Sousa-Dias, A. and R.A. Melo, 2008. Long-term abundance patterns of macroalgae in relation to environmental variables in the Tagus Estuary (Portugal). Estuar. Coast. Shelf. S., 76: 21-28. https://doi.org/10.1016/j.ecss.2007.05.039
  43. Steneck, R.S., M.H. Graham, B.J. Bourque, D. Corbett, J.M. Erlandson, J.A. Estes and M.J. Tegner, 2002. Kelp forest ecosystems: biodiversity, stability, resilience and future. Env. Conserv., 29: 436-459.
  44. Sung, K.H., 2010. Population study of Ecklonia cava Kjellman in Jeju Island, Korea. M.S. Thesis, Sungkyunkwan University, Suwon, 49 pp.
  45. Takatsuki, Y., N. Kuraga, T. Shiga, N. Bunki, H. Inoue, H. Fujiwara and M. Ariyoshi, 2007. Long-term trends in sea surface temperature adjacent to Japan. Sokko. Jiho. 74: S33-S87.
  46. Tegner, M.J., P.K. Dayton, P.B. Edwards and K.L. Riser, 1995. Sea urchin cavitation of giant kelp (Macrocystis pyrifera C. Agardh) holdfasts and its effects on kelp mortality across a large California forest. J. Exp. Mar. Biol. Ecol., 191: 83-99. https://doi.org/10.1016/0022-0981(95)00053-T
  47. Terawaki, T., H. Hasegawa, S. Arai and M. Ohno, 2001. Management-free techniques for restoration of Eisenia and Ecklonia beds along the central Pacific coast of Japan. J. Appl. Phycol., 13: 13-17. https://doi.org/10.1023/A:1008135515037
  48. Thomsen, M.S., T. Wernberg and G.A. Kendrick, 2004. The effect of thallus size, life stage, aggregation, wave exposure and substratum conditions on the forces required to break or dislodge the small kelp Ecklonia radiata. Bot. Mar., 47: 454-460.
  49. Vasquez, J.A., S. Zuniga, F. Tala, N. Piaget, D.C. Rodriguez and J.M.A. Vega, 2014. Economic valuation of kelp forests in northern Chile: values of goods and services of the ecosystem. J. Appl. Phycol., 26: 1081-1088. https://doi.org/10.1007/s10811-013-0173-6
  50. Vega, J.M.A., J.A. Vasquez and A.H. Buschmann, 2005. Population biology of the subtidal kelps Macrocystis integrifolia and Lessonia trabeculata (Laminariales, Phaeophyceae) in an upwelling ecosystem of northern Chile: interannual variability and El Nino 1997-1998. Rev. Chil. Hist. Nat., 78: 33-50.
  51. Wernberg, T., B.D. Russell, P.J. Moore, S.D. Ling, D.A. Smale, A. Campbell, M.A. Coleman, P.D. Steinberg, G.A. Kendrick and S.D. Connell, 2011. Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming. J. Exp. Mar. Biol. Ecol., 400: 7-16. https://doi.org/10.1016/j.jembe.2011.02.021
  52. Yokohama, Y., J. Tanaka and M. Chihara, 1987. Productivity of the Ecklonia cava community in a bay of Izu Peninsula on the Pacific Coast of Japan. Bot. Mag. Tokyo., 100: 129-141. https://doi.org/10.1007/BF02488318

Cited by

  1. Natural products targeting FcεRI receptor for anti‐allergic therapeutics vol.44, pp.8, 2016, https://doi.org/10.1111/jfbc.13335