DOI QR코드

DOI QR Code

Range-free localization algorithm between sensor nodes based on the Radical Line for Sensor Networks

센서 네트워크를 위한 Radical line을 기반으로 한 센서 노드간의 Range-free 지역화 알고리즘

  • Shin, Bong Hi (Dept. of Computer Science & Engineering, Incheon National Univ.) ;
  • Jeon, Hye Kyoung (Dept. of Computer Science & Information Technology, Inha Univ.)
  • 신봉희 (인천대학교 컴퓨터공학부) ;
  • 전혜경 (인하대학교 컴퓨터정보공학과)
  • Received : 2016.07.02
  • Accepted : 2016.08.20
  • Published : 2016.08.28

Abstract

In this paper, we studied the range-free localization algorithm between sensor nodes based on the Radical Line for sensor networks. Routing in wireless sensor networks should reduce the overall energy consumption of the sensor network, or induce equivalent energy consumption of all the sensor nodes. In particular, when the amount of data to send more data, the energy consumption becomes worse. New methods have been proposed to address this. So as to allow evenly control the overall energy consumption. For this, the paper covers designing a localization algorithm that can obtain the location information of the peripheral nodes with fewer operations. For the operation of the algorithm is applicable Radical Line. The experimental environment is windows 7, the Visual C ++ 2010, MSSQL 2008. The experimental results could be localized to perform an error rate of 0.1837.

본 논문에서는 센서 네트워크를 위한 Radical line을 기반으로 한 센서 노드간의 Range-free 지역화 알고리즘에 대해 연구한다. 무선 센서 네트워크에서 라우팅 기법은 센서 네트워크의 전체적인 에너지 소모량을 감소시키거나 모든 센서 노드들의 균등한 에너지 소비를 유도해야 한다. 특히 데이터가 전송할 데이터의 양이 많아지면 에너지 소모가 심해지는데 이를 극복하기 위한 새로운 방식들이 제안되었다. 그 결과 전체적인 에너지 소모량을 균등하게 조절할 수 있게 되었다. 이를 위해 논문에서도 적은 연산으로 주변 노드의 위치정보를 획득할 수 있는 지역화 알고리즘을 설계한다. 알고리즘의 연산을 위해 Radical Line을 적용한다. 실험환경은 운영체제는 윈도우 7, 플랫폼은 Visual C++ 2010으로 실험하였다. 실험결과 0.1837의 에러율로 지역화를 수행할 수 있었다.

Keywords

References

  1. ITU Internet Reports, The Internet of Things, Nov. 2005.
  2. Charith Perer, Dimitrios Georgakopoulos, "Contextaware computing for the internet of things : A survey," IEEE Communications Surveys & Tutorials, 2013.
  3. L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,” Computer Networks, Vol. 54, No. 15, pp. 2787-2805, 2010. https://doi.org/10.1016/j.comnet.2010.05.010
  4. Jeong-Ick Lee, “Convergent Case Study of Research and Education: Internet of Things Based Wireless Device Forming Research,” Journal of the Korea Convergence Society, Vol. 6, No. 4, pp. 1-7, 2015. https://doi.org/10.15207/JKCS.2015.6.4.001
  5. Onechul Na, Hyojik Lee, Soyoung Sung, Hangbae Chang, “A Study on Construction of Optimal Wireless Sensor System for Enhancing Organization Security Level on Industry Convergence Environment,” Journal of the Korea Convergence Society, Vol. 6, No. 4, pp. 139-146, 2015. https://doi.org/10.15207/JKCS.2015.6.4.139
  6. Yong-Wook Nam, Yong-Hyuk Kim, “Speed estimation of sound-emitted objects through convergence of sound information analysis and smart device technology,” Journal of the Korea Convergence Society, Vol. 6, No. 5, pp. 233-240, 2015. https://doi.org/10.15207/JKCS.2015.6.5.233
  7. Bong Soo Kim, So Young Hwang, Hoon Jung, Sung Soon Joo, “Ubiquitous Sensor Network Routing Technology,” Review of Korean Society for Internet Information, Vol. 9, No. 2, pp. 13-21, 2008.
  8. P. Biswas, T.-C. Lian, T.-C.Wang, and Y. Ye. Semidefinite programming based algorithms for sensor network localization. TOSN, Vol. 2, No. 2, pp. 188-220, 2006. https://doi.org/10.1145/1149283.1149286
  9. J. Hightower and G. Borriello, “Location Systems for Ubiquitous Computing,” IEEE Computer, Vol. 8, No. 34, pp. 57-66, 2001.
  10. Youngsoo Park, Jaeil Jung, “Performance Analysis of Position Based Routing Protocol for UAV Networks,” The Journal of The Korean Institute of Communication Sciences, Vol. 37, No. 2, pp. 188-195, 2012. https://doi.org/10.7840/KICS.2012.37C.2.188
  11. http://mathworld.wolfram.com/CirclePower.html
  12. http://mathworld.wolfram.com/RadicalLine.html
  13. http://mathworld.wolfram.com/ChordalTheorem.html
  14. T. Moscibroda, R. Wattenhofer, and A. Zollinger. "Topology control meets sinr: The scheduling complexity of arbitrary topologies". In MobiHoc, pp. 310-321, 2006.
  15. Young-Ho Kim, Joong-Soo Lim, Gyoo-Soo Chae, Kichul Kim, “An investigation of the Azimuth Error for Correlative Interferometer Direction Finding,” Journal of the Korea Convergence Society, Vol. 6, No. 5, pp. 249-255, 2015.