참고문헌
- Bodaghi, M., Damanpack, A.R., Aghdam, M.M. and Shakeri, M. (2014), "Geometrically non-linear transient thermo-elastic response of FG beams integrated with a pair of FG piezoelectric sensors," Compos. Struct., 107, 48-59. https://doi.org/10.1016/j.compstruct.2013.07.045
- Carbonari, R.C., Silva, E.C. and Paulino, G.H. (2009), "Multi-actuated functionally graded piezoelectric micro-tools design: A multiphysics topology optimization approach," Int. J. Numer. Meth. Eng., 77(3), 301-336. https://doi.org/10.1002/nme.2403
- Doroushi, A., Eslami, M.R. and Komeili, A. (2011), "Vibration analysis and transient response of an FGPM beam under thermo-electro-mechanical loads using higher-order shear deformation theory," J. Intel. Mater. Syst. Struct., 22(3), 231-243. https://doi.org/10.1177/1045389X11398162
- Ebrahimi, F. and Barati, M.R. (2015), "A nonlocal higher-order shear deformation beam theory for vibration analysis of size-dependent functionally graded nanobeams," Arab. J. Sci. Eng., 1-12.
- Ebrahimi, F. and Erfan, S. (2015e), "A semi-analytical method for vibrational and buckling analysis of functionally graded nanobeams considering the physical neutral axis position," CMES: Comput. Model. Eng. Sci., 105, 151-181
- Ebrahimi, F. and Rastgo, A. (2008), "An analytical study on the free vibration of smart circular thin FGM plate based on classical plate theory," Thin Wall. Struct., 46(12), 1402-1408. https://doi.org/10.1016/j.tws.2008.03.008
- Ebrahimi, F. and Salari, E. (2015a), "Effect of various thermal loadings on buckling and vibrational characteristics of nonlocal temperature-dependent FG nanobeams," Mech. Adv. Mater. Struct., 23(12), 1379-1397.
- Ebrahimi, F. and Salari, E. (2015b), "Thermo-mechanical vibration analysis of nonlocal temperaturedependent FG nanobeams with various boundary conditions," Compos. Part B: Eng., 78, 272-290. https://doi.org/10.1016/j.compositesb.2015.03.068
- Ebrahimi, F. and Salari, E. (2015c), "Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments," Compos. Struct., 128, 363-380. https://doi.org/10.1016/j.compstruct.2015.03.023
- Ebrahimi, F. and Salari, E. (2015d), "Size-dependent free flexural vibrational behavior of functionally graded nanobeams using semi-analytical differential transform method," Compos. Part B: Eng., 79, 156-169. https://doi.org/10.1016/j.compositesb.2015.04.010
- Ebrahimi, F. and Zia, M. (2015), "Large amplitude nonlinear vibration analysis of functionally graded Timoshenko beams with porosities," Acta Astronautica, 116, 117-125. https://doi.org/10.1016/j.actaastro.2015.06.014
- Ebrahimi, F., Ghadiri, M., Salari, E., Hoseini, S.A.H. and Shaghaghi, G.R. (2015b), "Application of the differential transformation method for nonlocal vibration analysis of functionally graded nanobeams," J. Mech. Sci. Tech., 29(3), 1207-1215. https://doi.org/10.1007/s12206-015-0234-7
- Ebrahimi, F., Rastgoo, A. and Atai, A.A. (2009), "A theoretical analysis of smart moderately thick shear deformable annular functionally graded plate," Euro. J. Mech. A/Solid., 28(5), 962-973. https://doi.org/10.1016/j.euromechsol.2008.12.008
- Ebrahimi, F., Salari, E. and Hosseini, S.A.H. (2015a), "Thermomechanical vibration behavior of FG nanobeams subjected to linear and non-linear temperature distributions," J. Therm. Stress., 38(12), 1362-1388.
- Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2012), "Free vibration analysis of functionally graded sizedependent nanobeams," Appl. Math. Comput., 218(14), 7406-7420. https://doi.org/10.1016/j.amc.2011.12.090
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves," J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
- Eringen, A.C. (2002), Nonlocal continuum field theories, Springer Science & Business Media.
- Fei, P., Yeh, P.H., Zhou, J., Xu, S., Gao, Y., Song, J. and Wang, Z.L. (2009), "Piezoelectric potential gated field-effect transistor based on a free-standing ZnO wire," Nano Lett., 9(10), 3435-3439. https://doi.org/10.1021/nl901606b
- Fu, Y., Du, H. and Zhang, S. (2003), "Functionally graded TiN/TiNi shape memory alloy films," Mater. Lett., 57(20), 2995-2999. https://doi.org/10.1016/S0167-577X(02)01419-2
- He, J.H., Hsin, C.L., Liu, J., Chen, L.J. and Wang, Z.L. (2007), "Piezoelectric gated diode of a single ZnO nanowire," Adv. Mater., 19(6), 781-784. https://doi.org/10.1002/adma.200601908
- Hosseini-Hashemi, S. and Nazemnezhad, R. (2013), "An analytical study on the nonlinear free vibration of functionally graded nanobeams incorporating surface effects," Compos. Part B: Eng., 52, 199-206. https://doi.org/10.1016/j.compositesb.2013.04.023
- Iijima, S. (1991), "Helical microtubules of graphitic carbon," Nature, 354, 56-58. https://doi.org/10.1038/354056a0
- Ke, L.L. and Wang, Y.S. (2012), "Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory," Smart Mater. Struct., 21(2), 025018. https://doi.org/10.1088/0964-1726/21/2/025018
- Ke, L.L., Wang, Y.S. and Wang, Z.D. (2012a), "Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory," Compos. Struct., 94(6), 2038-2047. https://doi.org/10.1016/j.compstruct.2012.01.023
- Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2012b), "Nonlinear free vibration of size-dependent functionally graded microbeams," Int. J. Eng. Sci., 50(1), 256-267. https://doi.org/10.1016/j.ijengsci.2010.12.008
- Kerman, K., Lai, B.K. and Ramanathan, S. (2012), "Nanoscale compositionally graded thin-film electrolyte membranes for low-temperature solid oxide fuel cells," Adv. Energy Mater., 2(6), 656-661. https://doi.org/10.1002/aenm.201100751
- Kiani, Y. and Eslami, M.R. (2013), "An exact solution for thermal buckling of annular FGM plates on an elastic medium," Compos. Part B: Eng., 45(1), 101-110. https://doi.org/10.1016/j.compositesb.2012.09.034
- Kim, H.S., Yang, Y., Koh, J.T., Lee, K.K., Lee, D.J., Lee, K.M. and Park, S.W. (2009), "Fabrication and characterization of functionally graded nano-micro porous titanium surface by anodizing," J. Biomed. Mater. Res. Part B: Appl. Biomater., 88(2), 427-435.
- Komijani, M., Kiani, Y., Esfahani, S.E. and Eslami, M.R. (2013), "Vibration of thermo-electrically postbuckled rectangular functionally graded piezoelectric beams," Compos. Struct., 98, 143-152. https://doi.org/10.1016/j.compstruct.2012.10.047
- Komijani, M., Reddy, J.N. and Eslami, M.R. (2014), "Nonlinear analysis of microstructure-dependent functionally graded piezoelectric material actuators," J. Mech. Phys. Solid., 63, 214-227. https://doi.org/10.1016/j.jmps.2013.09.008
- Lee, Z., Ophus, C., Fischer, L.M., Nelson-Fitzpatrick, N., Westra, K.L., Evoy, S., Radmilovic, V., Dahmen, U. and Mitlin, D. (2006), "Metallic NEMS components fabricated from nanocomposite Al-Mo films," Nanotechnol., 17(12), 3063. https://doi.org/10.1088/0957-4484/17/12/042
- Lezgy-Nazargah, M. (2015), "Fully coupled thermo-mechanical analysis of bi-directional FGM beams using NURBS isogeometric finite element approach," Aerosp. Sci. Tech., 45, 154-164. https://doi.org/10.1016/j.ast.2015.05.006
- Lezgy-Nazargah, M., Vidal, P. and Polit, O. (2013), "An efficient finite element model for static and dynamic analyses of functionally graded piezoelectric beams," Compos. Struct., 104, 71-84. https://doi.org/10.1016/j.compstruct.2013.04.010
- Lu, C.F., Lim, C.W. and Chen, W.Q. (2009), "Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory," Int. J. Solid. Struct., 46(5), 1176-1185. https://doi.org/10.1016/j.ijsolstr.2008.10.012
- Lun, F.Y., Zhang, P., Gao, F.B. and Jia, H.G. (2006), "Design and fabrication of micro optomechanical vibration sensor," Microfabric. Tech., 120(1), 61-64.
- Nateghi, A. and Salamat-talab, M. (2013), "Thermal effect on size dependent behavior of functionally graded microbeams based on modified couple stress theory," Compos. Struct., 96, 97-110. https://doi.org/10.1016/j.compstruct.2012.08.048
- Niknam, H., and Aghdam, M.M. (2015), "A semi analytical approach for large amplitude free vibration and buckling of nonlocal FG beams resting on elastic foundation," Compos. Struct., 119, 452-462. https://doi.org/10.1016/j.compstruct.2014.09.023
- Pradhan, S.C. and Mandal, U. (2013), "Finite element analysis of CNTs based on nonlocal elasticity and Timoshenko beam theory including thermal effect," Physica E: Low-dimens. Syst. Nanostruct., 53, 223-232. https://doi.org/10.1016/j.physe.2013.04.029
- Rahaeifard, M., Kahrobaiyan, M.H. and Ahmadian, M.T. (2009), "Sensitivity analysis of atomic force microscope cantilever made of functionally graded materials," International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers.
- Rahmani, O. and Pedram, O. (2014), "Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory," Int. J. Eng. Sci., 77, 55-70. https://doi.org/10.1016/j.ijengsci.2013.12.003
- Shi, Z.F. and Chen, Y. (2004), "Functionally graded piezoelectric cantilever beam under load," Arch. Appl. Mech., 74(3-4), 237-247. https://doi.org/10.1007/s00419-004-0346-5
- Tanner, S.M., Gray, J.M., Rogers, C.T., Bertness, K.A. and Sanford, N.A. (2007), "High-Q GaN nanowire resonators and oscillators," Appl. Phys. Lett., 91(20), 203117. https://doi.org/10.1063/1.2815747
- Wan, Q., Li, Q.H., Chen, Y.J., Wang, T.H., He, X.L., Li, J.P. and Lin, C.L. (2004), "Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors," Appl. Phys. Lett., 84(18), 3654-3656. https://doi.org/10.1063/1.1738932
- Wang, Q. (2002), "On buckling of column structures with a pair of piezoelectric layers," Eng. Struct., 24(2), 199-205. https://doi.org/10.1016/S0141-0296(01)00088-8
- Wang, Z.L. and Song, J. (2006), "Piezoelectric nanogenerators based on zinc oxide nanowire arrays," Science, 312(5771), 242-246. https://doi.org/10.1126/science.1124005
- Witvrouw, A. and Mehta, A. (2005), "The use of functionally graded poly-SiGe layers for MEMS applications," Mater. Sci. Forum, 492, 255-260.
- Xiang, H.J. and Shi, Z.F. (2009), "Static analysis for functionally graded piezoelectric actuators or sensors under a combined electro-thermal load," Euro. J. Mech. A/Solid., 28(2), 338-346. https://doi.org/10.1016/j.euromechsol.2008.06.007
- Yang, J. and Xiang, H.J. (2007), "Thermo-electro-mechanical characteristics of functionally graded piezoelectric actuators," Smart Mater. Struct., 16(3), 784. https://doi.org/10.1088/0964-1726/16/3/028
- Zhang, D.G. (2013), "Nonlinear bending analysis of FGM beams based on physical neutral surface and high order shear deformation theory," Compos. Struct., 100, 121-126. https://doi.org/10.1016/j.compstruct.2012.12.024
- Zhong, Z. and Yu, T. (2007), "Electroelastic analysis of functionally graded piezoelectric material beams," J. Intel. Mater. Syst. Struct., doi: 10.1177/1045389X07079453.
- Zhu, X. and Meng, Z. (1995), "Operational principle, fabrication and displacement characteristics of a functionally gradient piezoelectric ceramic actuator," Sens. Actuat. A: Phys., 48(3), 169-176. https://doi.org/10.1016/0924-4247(95)00996-5
피인용 문헌
- A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams vol.19, pp.2, 2017, https://doi.org/10.12989/sss.2017.19.2.115
- Surface effects on vibration and buckling behavior of embedded nanoarches vol.64, pp.1, 2017, https://doi.org/10.12989/sem.2017.64.1.001
- Dynamic characteristics of curved inhomogeneous nonlocal porous beams in thermal environment vol.64, pp.1, 2016, https://doi.org/10.12989/sem.2017.64.1.121
- Frequency and thermal buckling information of laminated composite doubly curved open nanoshell vol.10, pp.1, 2016, https://doi.org/10.12989/anr.2021.10.1.001
- Computer simulation for stability performance of sandwich annular system via adaptive tuned deep learning neural network optimization vol.11, pp.1, 2021, https://doi.org/10.12989/anr.2021.11.1.083
- Computer modeling for frequency performance of viscoelastic magneto-electro-elastic annular micro/nanosystem via adaptive tuned deep learning neural network optimization vol.11, pp.2, 2016, https://doi.org/10.12989/anr.2021.11.2.203