DOI QR코드

DOI QR Code

Correction of Fluoroscopic Image for Nucleoplasty in Lumbar Disc

요추디스크 수핵감압술을 위한 투시영상의 교정

  • Yun, Young Woo (Department of Radiological Science, Graduate of School, Catholic University of Pusan) ;
  • Kang, Se Sik (Department of Radiological Science, Catholic University of Pusan) ;
  • Choi, Seok Yoon (Department of Radiological Science, Catholic University of Pusan)
  • 윤영우 (부산가톨릭대학교 대학원 방사선학과) ;
  • 강세식 (부산가톨릭대학교 보건과학대학 방사선학과) ;
  • 최석윤 (부산가톨릭대학교 보건과학대학 방사선학과)
  • Received : 2016.07.20
  • Accepted : 2016.08.31
  • Published : 2016.08.31

Abstract

Fluoroscopy is performed when tissue or organ in the human body is examined, and it is used for diagnosis and procedure in back ailments. With regard to fluoroscopy equipment, distortion occurs on the peripheral part of fluoroscopic image rather than on its central part. This study measured distortion factors of vertical spacing ratio and distortion factor of diagonal spacing ratio before and after correction by applying a correction algorithm. According to measuring the vertical spacing ratio, post-correction standard deviation decreased by 0.04 in comparison with pre-correction one. Also measuring the diagonal spacing ratio, post-correction standard deviation decreased by 0.06 in comparison with pre-correction one. Consequently, the distortion of fluoroscopic image decreased after correction. A decrease in the distortion of image through the application of correction algorithm and the improvement of performance will be helpful in finding a correct position of lumbar puncture in nucleoplasty to treat lumbar disc herniation in the future.

투시조영촬영은 인체 내부의 조직이나 장기를 검사할 때 시행하며 특히 척추 질환의 진단 및 시술에 사용된다. 영상증배관(image intensifier tube)을 사용하는 투시조영 촬영장비는 영상에서 중심부보다 주변부에 왜곡이 나타난다. 본 연구에서는 교정 알고리즘을 적용하여 교정전과 교정후의 수직길이비 왜곡비율과 대각길이비의 왜곡비율을 측정하였다. 수직길이비의 측정결과는 교정후의 표준편차가 교정전보다 0.04감소하였고 대각길이비의 측정결과는 교정후의 표준편차가 교정전보다 0.06감소하여 교정 후 투시영상의 왜곡이 감소되었다. 향후 교정 알고리즘의 적용과 성능향상을 통해서 영상왜곡을 감소시키면 요추디스크의 치료를 위한 수핵감압술시 요추천자의 정확한 위치를 찾는데 도움을 줄 것으로 사료된다.

Keywords

References

  1. W. H. Jeong, "Radiation exposure and its reduction in the fluoroscopic examination and fluoroscopy-guided interventional radiology" Journal of the Korean Medical Association, Vol. 54, No. 12, pp. 1270-1276, 2011.
  2. P. A. Brouwer, W. C. Peul, R Brand, M. P. Arts, B. W. Koes, A. A. van den Berg, M. A. van Buchem, "Effectiveness of percutaneous laser disk decomporession versus conventional open discectomy in the treat ment of lumber disc herniation; design of a prospective randomized controlled trial", BMC Musculoskeletal Disorders, Vol. 10, No. 1, pp. 1471-2474, 2009.
  3. The Korea society of Medical imaging technology, Textbook of fluoroscopic Radiography, Second edition, pp. 13-32, 2011.
  4. C. W. Choi, J. H. Yi, "An Interpolation Method for a Barrel Distortion Using Nearest Pixels on a Corrected Image", Journal of The instidude of Electronics Engineers of Korea, Vol. 50, No. 7, pp. 1809-1818, 2013.
  5. H. S. Jin, D. H. Shin, S. N. Her, “Simulation Study for the Distortion Correction of Digital Angiographic Images using Geometric Transformation,” Journal of biomedical engineering research, Vol. 23, No. 5, pp. 365-373, 2002.
  6. Z. Zheng, D. Shearer, G. Chouqule, G. Friehs, “Comparison of geometric distortion in digital angiography with and without a correction program,” Journal of Neurosurgery, Vol. 93, No. 3, pp. 223-227, 2000.
  7. Y. S. Kim, J. H. Jeon, "System Implementation for Mobile-Based Diagnostic Medical Image Service," J-KICS, 13-11, Vol. 38B No. 11, 2013.
  8. M. N. Lee, S. M. Kwon, K. S Chon, “Analysis of Noise Power Spectrum According to Flat-Field correction in Digital Radiography,” Journal of the Korean Society of Radiology, Vol. 7, No. 3, pp. 227-232, 2013. https://doi.org/10.7742/jksr.2013.7.3.227
  9. H. Ojanen, "Automatic Correction of Lens Distortion by Using Digital Image Processing," www.math.rutgers.deu, 1999.
  10. D. W. Marquardt, “An algorithm for leastsquares estimation of nonlinear parameters,” Journal of the Society for Industrial and Applied Mathematics, Vol. 11, No. 2, pp. 431-441, 1963. https://doi.org/10.1137/0111030
  11. E. S. Park, "Usefulness of Screen Capture Image and Changing Pulse Rate of Fluoroscopic Equipment with Digital Imaging Technology," The Korea Journal of Radiological Imaging Technology, pp. 21-26, 2011.
  12. The Korea society of Medical imaging technology, Textbook of fluoroscopic Radiography, Second edition, pp. 448-455, 2011.
  13. http://www.samsunghospital.com/common/pdfFiledownload.do?seq=93