DOI QR코드

DOI QR Code

Large-strain Soft Sensors Using Elastomers Blended with Exfoliated/Fragmented Graphite Particles

탄성중합체와 박리 후 파쇄된 흑연입자 복합재를 이용한 대변형률 연성 센서

  • Received : 2016.03.04
  • Accepted : 2016.06.29
  • Published : 2016.09.01

Abstract

An elastic polymer (e.g., PDMS) blended with EFG particles is a promising conductive composite for fabricating soft sensors that can detect an object's deformation up to or more than 50%. Here, we develop large-strain, sprayable soft sensors using a mixture of PDMS and EFG particles, which are used as a host elastomer and electrically conductive particles, respectively. A solution for a conductive composite mixture is prepared by the microwave-assisted graphite exfoliation, followed by ultrasonication-induced fragmentation of the exfoliated graphite and ultrasonic blending of PDMS and EFG. Using the prepared solutions for composite and pure PDMS, 1-, 2-, and 3-axis soft sensors are fabricated by airbrush stencil technique where composite mixture and pure PDMS are materials for sensing and insulating layers, respectively. We characterize the soft strain sensors after investigating the effect of PDMS/EFG wt% on mechanical compliance and electrical conductance of the conductive composite.

탄성중합체와 흑연입자의 복합재는 전기 전도성 유연 소재로써, 대변형률 측정센서의 감지소자 제작에 적합하다. 본 연구에서는 기계적 연성이 우수한 탄성중합체인 polydimethylsiloxane(PDMS)와 전기 전도도가 높은 박리 후 파쇄된 흑연(expoliated and fragmented graphite, EFG)을 혼합하여 새로운 전기 전도성 유연 소재를 합성한 후 이를 이용하여 측정대상물의 변형률을 50% 이상까지 측정할 수 있는 고감도 연성 센서를 개발한다. 먼저, 천연 흑연가루를 전자레인지로 팽창시킨 후 초음파분쇄로 파쇄시켜 EFG를 준비한 후 PDMS와 혼합하여 전기 전도성 유연 소재를 준비한다. 1, 2 및 3축 대변형률 연성 센서는 상기 복합재로 만들어진 감지소자층과 순수 PDMS로 만들어진 절연층으로 구성되며, 각층은 저압스프레이 기반의 스텐실 기법을 통해 복합재 혹은 순수 PDMS 용액을 반복적으로 적층함으로써 제작된다. 본 논문에서는 PDMS와 EFG의 혼합비가 전기 전도성 유연 복합재의 기계적 연성과 전기 전도성에 미치는 효과에 대해 집중적으로 살펴본다.

Keywords

References

  1. Betz, D. C., Thursby, G., Culshaw, B. and Staszewski, W. J., 2006, "Advanced Layout of a Fiber Bragg Grating Strain Gauge Rosette," J. Lightwave Technol., Vol. 24, No. 2, pp. 1019-1026. https://doi.org/10.1109/JLT.2005.862442
  2. Peters, W. H. and Ranson, W. F., 1982, "Digital Imaging Techniques in Experimental Stress Analysis," Opt. Eng., Vol. 21, No. 3, pp. 427-431.
  3. Li, X., Zhang, Z., Qin, L., Feng, X., Feng, Z., He, L., et al., 2014, "High Strain Gradient Measurements Using Modified Automated Grid Technique," Opt. Laser. Eng., Vol. 52, pp. 140-144. https://doi.org/10.1016/j.optlaseng.2013.06.019
  4. Rosset, S., Niklaus, M., Dubois, P. and Shea, H., 2008, "Ion-implanted Compliant and Patternable Electrodes for Miniaturized Dielectric Elastomer Actuators," Proceedings of SPIE, Vol. 6927, pp. 69270W-10.
  5. Kim, J., Oh, S. and Yoon, S.-H., 2014, "Parameter Study of Microwave Assisted Exfoliation of Graphite and Its Application to Large Deformation Strain Sensors," Proceedings of IEEE SENSORS 2014, pp. 1699-1702.
  6. Park, S., Kim, J., Jeon, K.-J. and Yoon, S.-H., 2016, "Characterization on the Expanding Nature of Graphite in Microwave-Irradiated Exfoliation," J. Nanosci. Nanotechnol., Vol. 16, pp. 4450-4455. https://doi.org/10.1166/jnn.2016.10980
  7. Yoon, S.-H., Reyes-Ortiz, V., Kim, K.-H., Seo, Y. H. and Mofrad, M. R. K., 2010, "Analysis of Circular PDMS Microballoons with Ultralarge Deflection for MEMS Design," J. Microelectromech. Syst., Vol. 19, No. 4, pp. 854-864. https://doi.org/10.1109/JMEMS.2010.2049984
  8. Akinci, A., 2009, "Mechanical and Structural Properties of Polypropylene Composites Filled with Graphite Flakes," Archives of Materials Science and Engineering, Vol. 35, No. 2, pp. 91-94.

Cited by

  1. Effects of GnF Concentration on the Mechanoelectrical Properties and Surface Morphology of GnF/PDMS Composites vol.765, pp.1662-9795, 2018, https://doi.org/10.4028/www.scientific.net/KEM.765.65