DOI QR코드

DOI QR Code

Design of Linear Interferometer Antenna Regarding Beamwidth

빔폭을 고려한 선형간섭계 안테나 설계

  • Received : 2016.06.21
  • Accepted : 2016.08.17
  • Published : 2016.09.07

Abstract

In this paper, it is represented that equations for design of linear interferometer antenna when the 3 dB beamwidth is only region of interest. Using the equations, relationships between angle measurement ambiguity and element antenna spacings are described. And then, operating frequency, angle measurement accuracy, beamwidth, correct measurement probability are calculated for five antennas interferometer to measure azimuth and elevation angle. The interferometer antenna was designed and fabricated using the calculated parameters. The angle measurement accuracy were $0.01^{\circ}$ and $0.016^{\circ}$ for azimuth and elevation axes with 99 % probability of doing measurements correctly which means that ambiguous solution did not occur more than 1 % of the time. These results validated the equations and design procedures.

본 논문에서는 구성 안테나의 수신 영역을 빔 폭 내로 한정하고, 각도 측정 모호성이 없는 선형간섭계 안테나 설계를 위한 수식을 제안하였다. 수식을 이용하여 구성 안테나 간격과 각도 모호성과의 관계를 설명하고, 선형간섭계 설계를 위한 운용주파수, 각도 정확도, 빔폭, 측정 확률을 계산하여 고각과 방위각 측정을 위한 총 5개의 구성 안테나로 이루어진 선형간섭계 안테나를 설계, 제작, 측정한 결과를 제시하였다. 각도 측정 정확도는 방위각, 고각 각각 $0.01^{\circ}$, $0.016^{\circ}$ 이며, 계측 값의 99 % 이상이 모호성 없이 정확히 측정되었다. 이로써 제안한 수식과 설계 과정이 유효함을 확인할 수 있었다.

Keywords

References

  1. J. Jones, A. R. Webster, and W. K. Hocking, "An improved interferometer design for use with meteor radars", Radio Science, vol 33, no. 1, pp. 55-65, Jan-Feb 1998. https://doi.org/10.1029/97RS03050
  2. W. B. Kendall, "Unambiguous accuracy of an interferometer angle-measureing system", IEEE Transactions on Space Electronics and Telemetry, vol. SET-11, issue 2, pp. 62-70, 1965. https://doi.org/10.1109/TSET.1965.5009646
  3. S. E. Lipsky, Microwave Passive Direction Finding, SciTECH, 2004.
  4. 박철순, 김대영, "2차원 멀티베이스라인 방향탐지 배열구조 설계", 한국통신학회논문지, 31(10A), pp. 988-995, 2006년 10월.
  5. C. S. Park, "The fast correlative interferometer direction finder using I/Q demodulator", 2006 Asia-Pacific Conference on Communications, pp. 1-5, 2006.
  6. C. S. Park, "The array geometry design in airborne microwave 2-D direction finding", Fourth IEEE Workshop on Sensor Array and Multichannel Processing 2006, pp. 65-69, 2006.
  7. S. V. Doan, "Algorithm for obtaining high accurate phase interferometer", 2016 26th International Conference Radioelektronika, pp. 433-437, 2016.
  8. Z. M. Liu, "Azimuth and elevation estimation with rotating long-baseline interferometers", IEEE Transactions on Signal Processing, vol. 63, issue 9, pp. 2405-2419, 2015. https://doi.org/10.1109/TSP.2015.2405506
  9. A. Orduylmaz, "Hybrid phase amplitude direction finding method", 2015 23nd Signal Processing and Communications Applications Conference (SIU), pp. 109-112, 2015.
  10. M. Zucco, "A two-wavelength interferometer for space applications", Precision Elevtromagnetic Measurements (CPEM 2014), 2014 Conference, pp. 242-243, 2014.
  11. Y. H. Li, "A method for ambiguity solving based on rotary interferometer", Communications, Circuits and Systems (ICCCAS), 2013 International Conference, vol. 2, pp. 152-155, 2013.
  12. L. Shi, "Algorithm of signal processing with five-channel interferometer", 2010 International Symposium on Signals, Systems and Electronics, vol. 2, pp. 1-4, 2010.
  13. J. H. Lee, "Method for obtaining three-and four-element array spacing for interferometer direction-finding system", IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 897-900, 2016. https://doi.org/10.1109/LAWP.2015.2479224
  14. 조병래, 이정수, 이종민, 선선구, "2차원 레이다 간섭계에서 각도 추정 알고리즘의 각도 모호성 해소 성능비교", 한국전자파학회논문지, 23(178), pp. 410-413, 2012년.
  15. G. Wainwright, C. C. Chen, "Low profile wideband reflector antenna design", 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), pp. 2163-2164, 2013.