DOI QR코드

DOI QR Code

Isolation and Identification of Prepubertal Buffalo (Bubalus bubalis) Spermatogonial Stem Cells

  • Feng, Wanyou (State Key Laboratory of Conservation and Untilization of Subtropical Agro-Bioresources, Guangxi University) ;
  • Chen, Shibei (State Key Laboratory of Conservation and Untilization of Subtropical Agro-Bioresources, Guangxi University) ;
  • Do, Dagiang (State Key Laboratory of Conservation and Untilization of Subtropical Agro-Bioresources, Guangxi University) ;
  • Liu, Qinyou (State Key Laboratory of Conservation and Untilization of Subtropical Agro-Bioresources, Guangxi University) ;
  • Deng, Yanfei (State Key Laboratory of Conservation and Untilization of Subtropical Agro-Bioresources, Guangxi University) ;
  • Lei, Xiaocan (State Key Laboratory of Conservation and Untilization of Subtropical Agro-Bioresources, Guangxi University) ;
  • Luo, Chan (State Key Laboratory of Conservation and Untilization of Subtropical Agro-Bioresources, Guangxi University) ;
  • Huang, Ben (State Key Laboratory of Conservation and Untilization of Subtropical Agro-Bioresources, Guangxi University) ;
  • Shi, Deshun (State Key Laboratory of Conservation and Untilization of Subtropical Agro-Bioresources, Guangxi University)
  • Received : 2015.07.13
  • Accepted : 2015.11.14
  • Published : 2016.10.01

Abstract

Isolation and culture of spermatogonial stem cells (SSCs) are attractive for production of genetic modified offspring. In the present study, buffalo spermatogonial stem-like cells were isolated, cultured and expression pattern of different germ cell marker genes were determined. To recover spermatogonia, testes from age 3 to 7 months of buffalo were decapsulated, and seminiferous tubules were enzymatically dissociated. Two types of cells, immature sertoli cell and type A spermatogonia were observed in buffalo testes in this stage. Germ cell marker genes, OCT3/4 (Pou5f1), THY-1, c-kit, PGP9.5 (UCHL-1) and Dolichos biflorus agglutinin, were determined to be expressed both in mRNA and protein level by reverse transcription polymerase chain reaction and immunostaining in buffalo testes and buffalo spermatogonial stem-like cells, respectively. In the following, when the isolated buffalo buffalo spermatogonial stem-like cells were cultured in the medium supplemented 2.5% fetal bovine serum and 40 ng/mL glial cell-derived neurotrophic factor medium, SSCs proliferation efficiency and colony number were significantly improved than those of other groups (p<0.05). These findings may help in isolation and establishing long term in vitro culture system for buffalo spermatogonial stem-like cells, and accelerating the generation of genetic modified buffaloes.

Keywords

References

  1. Abbasi, H., M. Tahmoorespur, S. M. Hosseini, Z. Nasiri, M. Bahadorani, M. Hajian, M. R. Nasiri, and M. H. Nasr-Esfahani. 2013. Thy1 as a reliable marker for enrichment of undifferentiated spermatogonia in the goat. Theriogenology 80:923-932. https://doi.org/10.1016/j.theriogenology.2013.07.020
  2. Aponte, P. M., T. Soda, K. J. Teerds, S. C. Mizrak, H. J. G. van de Kant, and D. G. de Rooij. 2008. Propagation of bovine spermatogonial stem cells in vitro. Reproduction 136:543-557. https://doi.org/10.1530/REP-07-0419
  3. Chapman, K. M., G. A. Medrano, P. Jaichander, J. Chaudhary, A. E. Waits, M. A. Nobrega, J. M. Hotaling, C. Ober, and F. K. Hamra. 2015. Targeted germline modifications in rats using CRISPR/Cas9 and spermatogonial stem cells. Cell Rep. 10:1828-1835. https://doi.org/10.1016/j.celrep.2015.02.040
  4. Ebata, K. T., J. R. Yeh, X. Zhang, and M. C. Nagano. 2008. The application of biomarkers of spermatogonial stem cells for restoring male fertility. Dis. Markers 24:267-276. https://doi.org/10.1155/2008/536020
  5. Encinas, G., C. Zogbi, and T. Stumpp. 2012. Detection of four germ cell markers in rats during testis morphogenesis:Differences and similarities with mice. Cells Tissues Organs 195:443-455. https://doi.org/10.1159/000329245
  6. Gaj, T., C. A. Gersbach, and C. F. Barbas III. 2013. Zfn, talen, and crispr/cas-based methods for genome engineering. Trends Biotechnol. 31:397-405. https://doi.org/10.1016/j.tibtech.2013.04.004
  7. Harkey, M. A., A. Asano, M. E. Zoulas, B. Torok-Storb, J. Nagashima, and A. Travis. 2013. Isolation, genetic manipulation, and transplantation of canine spermatogonial stem cells: Progress toward transgenesis through the male germ-line. Reproduction 146:75-90. https://doi.org/10.1530/REP-13-0086
  8. Heidari, B., M. Rahmati-Ahmadabadi, M. M. Akhondi, A. H. Zarnani, M. Jeddi-Tehrani, A. Shirazi, M. M. Naderi, and B. Behzadi. 2012. Isolation, identification, and culture of goat spermatogonial stem cells using c-kit and pgp9.5 markers. J. Assist. Reprod. Genet. 29:1029-1038. https://doi.org/10.1007/s10815-012-9828-5
  9. Hofmann, M. C. 2008. GDNF signaling pathways within the mammalian spermatogonial stem cell niche. Mol. Cell. Endocrinol. 288:95-103. https://doi.org/10.1016/j.mce.2008.04.012
  10. Izadyar, F., G. T. Spierenberg, L. B. Creemers, K. den Ouden, and D. G. de Rooij. 2002. Isolation and purification of type a spermatogonia from the bovine testis. Reproduction 124:85-94. https://doi.org/10.1530/rep.0.1240085
  11. Kanatsu-Shinohara, M., M. Kato-Itoh, M. Ikawa, M. Takehashi, M. Sanbo, Y. Morioka, T. Tanaka, H. Morimoto, M. Hirabayashi, and T. Shinohara. 2011. Homologous recombination in rat germline stem cells. Biol. Reprod. 85:208-217. https://doi.org/10.1095/biolreprod.111.090837
  12. Kanatsu-Shinohara, M. and T. Shinohara. 2013. Spermatogonial stem cell self-renewal and development. Annu. Rev. Cell Dev. Biol. 29:163-187. https://doi.org/10.1146/annurev-cellbio-101512-122353
  13. Kubota, H., M. R. Avarbock, and R. L. Brinster. 2003. Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. Proc. Natl. Acad. Sci. USA. 100:6487-6492. https://doi.org/10.1073/pnas.0631767100
  14. Lee, W. Y., H. J. Park, R. Lee, K. H. Lee, Y. H. Kim, B. Y. Ryu, N. H. Kim, J. H. Kim, J. H. Kim, S. H. Moon, J. K. Park, H. J. Chung, D. H. Kim, and H. Song. 2013. Establishment and in vitro culture of porcine spermatogonial germ cells in low temperature culture conditions. Stem Cell Res. 11:1234-1249. https://doi.org/10.1016/j.scr.2013.08.008
  15. Lee, Y. A., Y. H. Kim, S. J. Ha, K. J. Kim, B. J. Kim, B. G. Kim, S. H. Choi, I. C. Kim, J. A. Schmidt, and B. Y. Ryu. 2014. Cryopreservation of porcine spermatogonial stem cells by slow-freezing testis tissue in trehalose. J. Anim. Sci. 92:984-995. https://doi.org/10.2527/jas.2013-6843
  16. Lengner, C. J., G. G. Welstead, and R. Jaenisch. 2008. The pluripotency regulator oct4: A role in somatic stem cells? Cell Cycle 7:725-728. https://doi.org/10.4161/cc.7.6.5573
  17. Mahla, R. S., N. Reddy, and S. Goel. 2012. Spermatogonial stem cells (SSCs) in buffalo (Bubalus bubalis) testis. PLoS One 7:e36020. https://doi.org/10.1371/journal.pone.0036020
  18. Meng, X., M. Lindahl, M. E. Hyvonen, M. Parvinen, D. G. de Rooij, M. W. Hess, A. Raatikainen-Ahokas, K. Sainio, H. Rauvala, M. Lakso, J. G. Pichel, H. Westphal, M. Saarma, and H. Sariola. 2000. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287:1489-1493. https://doi.org/10.1126/science.287.5457.1489
  19. Momeni-Moghaddam, M., M. M. Matin, S. Boozarpour, S. Sisakhtnezhad, H. K. Mehrjerdi, M. Farshchian, M. Dastpak, and A. R. Bahrami. 2014. A simple method for isolation, culture, and in vitro maintenance of chicken spermatogonial stem cells. In Vitro Cell. Dev. Biol. Anim. 50:155-161. https://doi.org/10.1007/s11626-013-9685-2
  20. Oatley, J. M., D. M. de Avila, J. J. Reeves, and D. J. McLean. 2004. Testis tissue explant culture supports survival and proliferation of bovine spermatogonial stem cells. Biol. Reprod. 70:625-631. https://doi.org/10.1095/biolreprod.103.022483
  21. Ohta, H., K. Yomogida, K. Dohmae, and Y. Nishimune. 2000. Regulation of proliferation and differentiation in spermatogonial stem cells: The role of c-kit and its ligand scf. Development 127:2125-2131.
  22. Reding, S. C., A. L. Stepnoski, E. W. Cloninger, and J. M. Oatley. 2010. Thy1 is a conserved marker of undifferentiated spermatogonia in the pre-pubertal bull testis. Reproduction 139:893-903. https://doi.org/10.1530/REP-09-0513
  23. Rodriguez-Sosa, J. R., H. Dobson, and A. Hahnel. 2006. Isolation and transplantation of spermatogonia in sheep. Theriogenology 66:2091-2103. https://doi.org/10.1016/j.theriogenology.2006.03.039
  24. Ryu, B.-Y., K. E. Orwig, H. Kubota, M. R. Avarbock, and R. L. Brinster. 2004. Phenotypic and functional characteristics of spermatogonial stem cells in rats. Dev. Biol. 274:158-170. https://doi.org/10.1016/j.ydbio.2004.07.004
  25. Sehgal, L., A. Usmani, S. N. Dalal, and S. S. Majumdar. 2014. Generation of transgenic mice by exploiting spermatogonial stem cells in vivo. Methods Mol. Biol. 1194:327-337. https://doi.org/10.1007/978-1-4939-1215-5_18
  26. Shi, D., F. Lu, Y. Wei, K. Cui, S. Yang, J. Wei, and Q. Liu. 2007. Buffalos (bubalus bubalis) cloned by nuclear transfer of somatic cells. Biol. Reprod. 77:285-291. https://doi.org/10.1095/biolreprod.107.060210
  27. Shi, D. S., J. Wang, Y. Yang, F. H. Lu, X. P. Li, and Q. Y. Liu. 2012. DGAT1, GH, GHR, PRL and PRLR polymorphism in water buffalo (Bubalus bubalis). Reprod. Domest. Anim. 47:328-334. https://doi.org/10.1111/j.1439-0531.2011.01876.x
  28. Sisakhtnezhad, S., A. R. Bahrami, M. M. Matin, H. Dehghani, M. Momeni-Moghaddam, S. Boozarpour, M. Farshchian, and M. Dastpak. 2015. The molecular signature and spermatogenesis potential of newborn chicken spermatogonial stem cells in vitro. In Vitro Cell. Dev. Biol. Anim. 51:415-425. https://doi.org/10.1007/s11626-014-9843-1
  29. Stockwell, S., M. Herrid, R. Davey, A. Brownlee, K. Hutton, and J. R. Hill. 2009. Microsatellite detection of donor-derived sperm DNA following germ cell transplantation in cattle. Reprod. Fertil. Dev. 21:462-468. https://doi.org/10.1071/RD08130
  30. von Kopylow, K., C. Kirchhoff, D. Jezek, W. Schulze, C. Feig, M. Primig, V. Steinkraus, and A. N. Spiess. 2010. Screening for biomarkers of spermatogonia within the human testis: A whole genome approach. Hum. Reprod. 25:1104-1112. https://doi.org/10.1093/humrep/deq053
  31. Xie, B., Z. Qin, B. Huang, T. Xie, H. Yao, Y. Wei, X. Yang, D. Shi, and H. Jiang. 2010. In vitro culture and differentiation of buffalo (Bubalus bubalis) spermatogonia. Reprod. Domest. Anim. 45:275-282. https://doi.org/10.1111/j.1439-0531.2008.01281.x
  32. Yu, X., H. Riaz, P. Dong, Z. Chong, X. Luo, A. Liang, and L. Yang. 2014. Identification and IVC of spermatogonial stem cells in prepubertal buffaloes. Theriogenology 81:1312-1322. https://doi.org/10.1016/j.theriogenology.2014.03.002

Cited by

  1. H19 regulates the proliferation of bovine male germline stem cells via IGF-1 signaling pathway vol.234, pp.1, 2019, https://doi.org/10.1002/jcp.26920
  2. EGF, GDNF, and IGF-1 influence the proliferation and stemness of ovine spermatogonial stem cells in vitro vol.37, pp.10, 2016, https://doi.org/10.1007/s10815-020-01912-5