DOI QR코드

DOI QR Code

Peripheral Insulin Doesn't Alter Appetite of Broiler Chicks

  • Liu, Lei (Department of Animal Science, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control) ;
  • Xu, Shaohua (Department of Animal Science, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control) ;
  • Wang, Xiaojuan (Department of Animal Science, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control) ;
  • Jiao, Hongchao (Department of Animal Science, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control) ;
  • Lin, Hai (Department of Animal Science, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control)
  • Received : 2015.08.13
  • Accepted : 2015.12.28
  • Published : 2016.09.01

Abstract

An experiment was conducted to investigate the effect of peripheral insulin treatment on appetite in chicks. Six-d-age chicks with ad libitum feeding or fasting for 3 h before injection received a subcutaneous injection of 0, 1, 3, 5, 10, or 20 IU of insulin or vehicle (saline). The results showed peripheral insulin treatment (1 to 20 IU) did not alter significantly the feed intake in chicks under either ad libitum feeding or fasting conditions within 4 h (p>0.05). Compared with the control, plasma glucose concentration was significantly decreased after insulin treatment of 3, 5, 10, and 20 IU for 4 h in chicks with ad libitum feeding (p<0.05). In fasted chicks, 10 and 20 IU insulin treatments significantly decreased the plasma glucose level for 4 h (p<0.05). Peripheral insulin treatment of 10 IU for 2 or 4 h did not significantly affect the hypothalamic genes expression of neuropeptide Y, proopiomelanocortin, corticotropin-releasing factor and insulin receptors (p>0.05). All results suggest peripheral administration of insulin has no effect on appetite in chicks.

Keywords

References

  1. Benoit, S. C., E. L. Air, L. M. Coolen, R. Strauss, A. Jackman, D. J. Clegg, R. J. Seeley, and S. C. Woods. 2002. The catabolic action of insulin in the brain is mediated by melanocortins. J. Neurosci. 22:9048-9052. https://doi.org/10.1523/JNEUROSCI.22-20-09048.2002
  2. Boswell, T. 2005. Regulation of energy balance in birds by the neuroendocrine hypothalamus. J. Poult. Sci. 42:161-181. https://doi.org/10.2141/jpsa.42.161
  3. Branton, A., T. Akhavan, B. Gladanac, D. Pollard, J. Welch, M. Rossiter, and N. Bellissimo. 2014. Pre-meal video game playing and a glucose preload suppress food intake in normal weight boys. Appetite 83:256-262. https://doi.org/10.1016/j.appet.2014.08.024
  4. Chan, O., K. Inouye, E. Akirav, E. Park, M. C. Riddell, M. Vranic, and S. G. Matthews. 2005. Insulin alone increases hypothalamo-pituitary-adrenal activity, and diabetes lowers peak stress responses. Endocrinology 146:1382-1390. https://doi.org/10.1210/en.2004-0607
  5. Denbow, D. M., N Snapir, and M. Furuse. 1999. Inhibition of food intake by CRF in chickens. Physiol. Behav. 66:645-649. https://doi.org/10.1016/S0031-9384(98)00340-0
  6. Deetz, L. E. and P. J. Wangsness. 1980. Effect of intrajugular administration of insulin on feed intake, plasma glucose and plasma insulin of sheep. J. Nutr. 110:1976-1982. https://doi.org/10.1093/jn/110.10.1976
  7. Dridi, S., Q. Swennen, E. Decuypere, and J. Buyse. 2005. Mode of leptin action in chicken hypothalamus. Brain Res. 1047:214-223. https://doi.org/10.1016/j.brainres.2005.04.034
  8. Gibson, W. R., A. R. Bourne, and C. Sernia. 1980. D-xylose transport in isolated skeletal muscle of chickens: Effects of insulin and tolbutamide. Comp. Biochem. Physiol. C. Comp. Pharmacol. 67:41-47. https://doi.org/10.1016/0306-4492(80)90056-8
  9. Gomez-Capilla, J. A. and D. R. Langslow. 1977. Insulin action on glucose utilization in chicken adipocytes. Int. J. Biochem. 8:417-420. https://doi.org/10.1016/0020-711X(77)90039-8
  10. Honda, K., H. Kamisoyama, T. Saneyasu, K. Sugahara, and S. Hasegawa. 2007. Central administration of insulin suppresses food intake in chicks. Neurosci. Lett. 423:153-157. https://doi.org/10.1016/j.neulet.2007.07.004
  11. Kuenzel, W. J. and J. McMurtry. 1988. Neuropeptide Y: brain localization and central effects on plasma insulin levels in chicks. Physiol. Behav. 44:669-678. https://doi.org/10.1016/0031-9384(88)90334-4
  12. Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
  13. Niswender, K. D., D. G. Baskin, and M. W. Schwartz. 2004. Insulin and its evolving partnership with leptin in the hypothalamic control of energy homeostasis. Trends Endocrinol. Metab. 15:362-369. https://doi.org/10.1016/S1043-2760(04)00154-7
  14. Obici, S., Z. Feng, G. Karkanias, D. G. Baskin, and L. Rossetti. 2002. Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats. Nat. Neurosci. 5:566-572. https://doi.org/10.1038/nn0602-861
  15. Pagotto, U. 2009. Where does insulin resistance start? Diabetes Care 32:S174-S177. https://doi.org/10.2337/dc09-S305
  16. Richards, M. P. 2003. Genetic regulation of feed intake and energy balance in poultry. Poult. Sci. 82:907-916. https://doi.org/10.1093/ps/82.6.907
  17. Saltiel, A. R. and C. R. Kahn. 2001. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799-806. https://doi.org/10.1038/414799a
  18. Schwartz, M. W., A. J. Sipols, J. L. Marks, G. Sanacora, J. D. White, A. Scheurink, S. E. Kahn, D. G. Baskin, S. C. Woods, and D. P. Figlewicz. 1992. Inhibition of hypothalamic neuropeptide Y gene expression by insulin. Endocrinology 130:3608-3616. https://doi.org/10.1210/endo.130.6.1597158
  19. Schwartz, M. W., S. C. Woods, D. Porte, Jr., R. J. Seeley, and D. G. Baskin. 2000. Central nervous system control of food intake. Nature 404:661-671. https://doi.org/10.1038/35007534
  20. Shiraishi, J., H. Tanizawa, M. Fujita, S. Kawakami, and T. Bungo. 2011a. Localization of hypothalamic insulin receptor in neonatal chicks: Evidence for insulinergic system control of feeding behavior. Neurosci. Lett. 491:177-180. https://doi.org/10.1016/j.neulet.2011.01.031
  21. Shiraishi, J., K. Yanagita, R. Fukumori, T. Sugino, M. Fujita, S. Kawakami, J. P. McMurtry, and T. Bungo. 2011b. Comparisons of insulin related parameters in commercial-type chicks: Evidence for insulin resistance in broiler chicks. Physiol. Behav. 103:233-239. https://doi.org/10.1016/j.physbeh.2011.02.008
  22. Simon, J., M. Derouet, and C. Gespach. 2000. An anti-insulin serum, but not a glucagon antagonist, alters glycemia in fed chickens. Horm. Metab. Res. 32:139-141. https://doi.org/10.1055/s-2007-978608
  23. Simon, J., P. Freychet, and G. Rosselin. 1974. Chicken insulin: radioimmunological characterization and enhanced activity in rat fat cells and liver plasma membranes. Endocrinology 95:1439-1449. https://doi.org/10.1210/endo-95-5-1439
  24. Simon, J. and D. Leroith. 1986. Insulin receptors of chicken liver and brain. Characterization of alpha and beta subunit properties. Eur. J. Biochem. 158:125-132. https://doi.org/10.1111/j.1432-1033.1986.tb09729.x
  25. Song, Z., L. Liu, Y. Yue, H. Jiao, H. Lin, A. Sheikhahmadi, N. Everaert, E. Decuypere, and J. Buyse. 2012. Fasting alters protein expression of AMP-activated protein kinase in the hypothalamus of broiler chicks (Gallus gallus domesticus). Gen. Comp. Endocrinol. 178:546-555. https://doi.org/10.1016/j.ygcen.2012.06.026
  26. Sonoda, T. 1983. Hyperinsulinemia and its role in maintaining the hypothalamic hyperphagia in chickens. Physiol. Behav. 30:325-329. https://doi.org/10.1016/0031-9384(83)90133-6
  27. Wang, X. J., D. L. Wei, Z. G. Song, H. C. Jiao, and H. Lin. 2012. Effects of fatty acid treatments on the dexamethasone-induced intramuscular lipid accumulation in chickens. PLoS ONE 7:e36663. https://doi.org/10.1371/journal.pone.0036663
  28. Woods, S. C., S. C. Benoit, and D. J. Clegg. 2006. The brain-gutislet connection. Diabetes 55:S114-S121. https://doi.org/10.2337/db06-S015
  29. Yuan, L., Y. Ni, S. Barth, Y. Wang, R. Grossmann, and R. Zhao. 2009. Layer and broiler chicks exhibit similar hypothalamic expression of orexigenic neuropeptides but distinct expression of genes related to energy homeostasis and obesity. Brain Res. 1273:18-28. https://doi.org/10.1016/j.brainres.2009.03.052

Cited by

  1. Identification of Crucial Genetic Factors, Such as PPARγ, that Regulate the Pathogenesis of Fatty Liver Disease in Dairy Cows Is Imperative for the Sustainable Development of Dairy Industry vol.10, pp.4, 2020, https://doi.org/10.3390/ani10040639
  2. Effects of dietary corticosterone on the central adenosine monophosphate-activated protein kinase (AMPK) signaling pathway in broiler chickens vol.98, pp.7, 2016, https://doi.org/10.1093/jas/skaa202
  3. Effects of Dietary Energy Level on Performance, Plasma Parameters, and Central AMPK Levels in Stressed Broilers vol.8, pp.None, 2021, https://doi.org/10.3389/fvets.2021.681858
  4. Dusk feeding in laying hens is shifted by light program via involvement of clock genes vol.105, pp.6, 2021, https://doi.org/10.1111/jpn.13528