References
- Ahmad, A., Khan, M. M., Hoda, M. N., Raza, S. S., Khan, M. B., Javed, H., Ishrat, T., Ashafaq, M., Ahmad, M. E., Safhi, M. M. and Islam, F. (2011) Quercetin protects against oxidative stress associated damages in a rat model of transient focal cerebral ischemia and reperfusion. Neurochem. Res. 36, 1360-1371. https://doi.org/10.1007/s11064-011-0458-6
- Amor, S., Puentes, F., Baker, D. and van der Valk, P. (2010) Inflammation in neurodegenerative diseases. Immunology 129, 154-169. https://doi.org/10.1111/j.1365-2567.2009.03225.x
- Bauer, M. and Bauer, I. (2002) Heme oxygenase-1: redox regulation and role in the hepatic response to oxidative stress. Antioxid. Redox. Signal. 4, 749-758. https://doi.org/10.1089/152308602760598891
- Block, M. L., Zecca, L. and Hong, J. S. (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci. 8, 57-69. https://doi.org/10.1038/nrn2038
- Cunningham, C. (2013) Microglia and neurodegeneration: the role of systemic inflammation. Glia 61, 71-90. https://doi.org/10.1002/glia.22350
- Dajas, F., Rivera, F., Blasina, F., Arredondo, F., Echeverry, C., Lafon, L., Morquio, A. and Heinzen, H. (2003) Cell culture protection and in vivo neuroprotective capacity of flavonoids. Neurotox. Res. 5, 425-432. https://doi.org/10.1007/BF03033172
-
Jayasooriya, R. G., Lee, K. T., Lee, H. J., Choi, Y. H., Jeong, J. W. and Kim, G. Y. (2014) Anti-inflammatory effects of
${\beta}$ -hydroxyisovaleryl-shikonin in BV2 microglia are mediated through suppression of the PI3K/Akt/NF-${\kappa}B$ pathway and activation of the Nrf2/HO-1 pathway. Food Chem. Toxicol. 65, 82-89. https://doi.org/10.1016/j.fct.2013.12.011 -
Kim, B. W., Koppula, S., Park, S. Y., Hwang, J. W., Park, P. J., Lim, J. H. and Choi, D. K. (2014) Attenuation of inflammatory-mediated neurotoxicity by Saururus chinensis extract in LPS-induced BV-2 microglia cells via regulation of NF-
${\kappa}B$ signaling and anti-oxidant properties. BMC Complement. Altern. Med. 14, 502. https://doi.org/10.1186/1472-6882-14-502 - Kim, S., Kim, J. I., Choi, J. W., Kim, M., Yoon, N. Y., Choi, C. G., Choi, J. S. and Kim, H. R. (2013) Anti-inflammatory effect of hexane fraction from Myagropsis myagroides ethanolic extract in lipopolysaccharide-stimulated BV-2 microglial cells. J. Pharm. Pharmacol. 65, 895-906. https://doi.org/10.1111/jphp.12049
- Kim, S. H., Smith, C. J. and Van Eldik, L. J. (2004) Importance of MAPK pathways for microglial pro-inflammatory cytokine IL-1 beta production. Neurobiol. Aging 25, 431-439. https://doi.org/10.1016/S0197-4580(03)00126-X
-
Ko, C. Y., Wang, W. L., Wang, S. M., Chu, Y. Y., Chang, W. C. and Wang, J. M. (2014) Glycogen synthase kinase-
$3{\beta}$ -mediated CCAAT/enhancer-binding protein delta phosphorylation in astrocytes promotes migration and activation of microglia/macrophages. Neurobiol. Aging 35, 24-34. https://doi.org/10.1016/j.neurobiolaging.2013.07.021 - Ko, H. M., Koppula, S., Kim, B. W., Kim, I. S., Hwang, B. Y., Suk, K., Park, E. J. and Choi, D. K. (2010) Inflexin attenuates proinflammatory responses and nuclear factor-kappaB activation in LPS-treated microglia. Eur. J. Pharmacol. 633, 98-106. https://doi.org/10.1016/j.ejphar.2010.02.011
- Kwon, S. H., Hong, S. I., Ma, S. X., Lee, S. Y. and Jang, C. G. (2015a) 3',4',7-Trihydroxyflavone prevents apoptotic cell death in neuronal cells from hydrogen peroxide-induced oxidative stress. Food Chem. Toxicol. 80, 41-51. https://doi.org/10.1016/j.fct.2015.02.014
-
Kwon, S. H., Ma, S. X., Hong, S. I., Lee, S. Y. and Jang, C. G. (2015b) Lonicera japonica THUNB. Extract Inhibits Lipopolysaccharide-Stimulated Inflammatory Responses by Suppressing NF-
${\kappa}B$ Signaling in BV-2 Microglial Cells. J. Med. Food 18, 762-775. https://doi.org/10.1089/jmf.2014.3341 - Lee, K., Lee, J. S., Jang, H. J., Kim, S. M., Chang, M. S., Park, S. H., Kim, K. S., Bae, J., Park, J. W., Lee, B., Choi, H. Y., Jeong, C. H. and Bu, Y. (2012) Chlorogenic acid ameliorates brain damage and edema by inhibiting matrix metalloproteinase-2 and 9 in a rat model of focal cerebral ischemia. Eur. J. Pharmacol. 689, 89-95. https://doi.org/10.1016/j.ejphar.2012.05.028
- Liu, H. T., Du, Y. G., He, J. L., Chen, W. J., Li, W. M., Yang, Z., Wang, Y. X. and Yu, C. (2010) Tetramethylpyrazine inhibits production of nitric oxide and inducible nitric oxide synthase in lipopolysaccharideinduced N9 microglial cells through blockade of MAPK and PI3K/Akt signaling pathways, and suppression of intracellular reactive oxygen species. J. Ethnopharmacol. 129, 335-343. https://doi.org/10.1016/j.jep.2010.03.037
- Lue, L. F., Walker, D. G. and Rogers, J. (2001) Modeling microglial activation in Alzheimer's disease with human postmortem microglial cultures. Neurobiol. Aging 22, 945-956. https://doi.org/10.1016/S0197-4580(01)00311-6
- Lull, M. E. and Block, M. L. (2010) Microglial activation and chronic neurodegeneration. Neurotherapeutics 7, 354-365. https://doi.org/10.1016/j.nurt.2010.05.014
-
Park, S. Y., Jin, M. L., Kim, Y. H., Kim, Y. and Lee, S. J. (2012) Antiinflammatory effects of aromatic-turmerone through blocking of NF-
${\kappa}$ B, JNK, and p38 MAPK signaling pathways in amyloid${\beta}$ -stimulated microglia. Int. Immunopharmacol. 14, 13-20. https://doi.org/10.1016/j.intimp.2012.06.003 -
Prasad, R. G., Choi, Y. H. and Kim, G. Y. (2015) Shikonin Isolated from Lithospermum erythrorhizon Downregulates Proinflammatory Mediators in Lipopolysaccharide-Stimulated BV2 Microglial Cells by Suppressing Crosstalk between Reactive Oxygen Species and NF-
${\kappa}B$ . Biomol.Ther. (Seoul) 23, 110-118. https://doi.org/10.4062/biomolther.2015.006 - Richetti, S. K., Blank, M., Capiotti, K. M., Piato, A. L., Bogo, M. R., Vianna, M. R. and Bonan, C. D. (2011) Quercetin and rutin prevent scopolamine-induced memory impairment in zebrafish. Behav. Brain Res. 217, 10-15. https://doi.org/10.1016/j.bbr.2010.09.027
- Schwartz, M. (2003) Macrophages and microglia in central nervous system injury: are they helpful or harmful? J. Cereb. Blood Flow Metab. 23, 385-394. https://doi.org/10.1097/01.WCB.0000061881.75234.5E
- Tansey, M. G., McCoy, M. K. and Frank-Cannon, T. C. (2007) Neuroinflammatory mechanisms in Parkinson's disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp. Neurol. 208, 1-25. https://doi.org/10.1016/j.expneurol.2007.07.004
- Teismann, P., Tieu, K., Cohen, O., Choi, D. K., Wu, D. C., Marks, D., Vila, M., Jackson-Lewis, V. and Przedborski, S. (2003) Pathogenic role of glial cells in Parkinson's disease. Mov. Disord. 18, 121-129. https://doi.org/10.1002/mds.10332
- Wang, L., Zhang, X. T., Zhang, H. Y., Yao, H. Y. and Zhang, H. (2010) Effect of Vaccinium bracteatum Thunb. leaves extract on blood glucose and plasma lipid levels in streptozotocin-induced diabetic mice. J. Ethnopharmacol. 130, 465-469. https://doi.org/10.1016/j.jep.2010.05.031
- Wang, L., Zhang, Y., Xu, M., Wang, Y., Cheng, S., Liebrecht, A., Qian, H., Zhang, H. and Qi, X. (2013) Anti-diabetic activity of Vaccinium bracteatum Thunb. leaves' polysaccharide in STZ-induced diabetic mice. Int. J. Biol. Macromol. 61, 317-321. https://doi.org/10.1016/j.ijbiomac.2013.07.028
- Wang, M. J., Lin, W. W., Chen, H. L., Chang, Y. H., Ou, H. C., Kuo, J. S., Hong, J. S. and Jeng, K. C. (2002) Silymarin protects dopaminergic neurons against lipopolysaccharide-induced neurotoxicity by inhibiting microglia activation. Eur. J. Neurosci. 16, 2103-2112. https://doi.org/10.1046/j.1460-9568.2002.02290.x
- Wilms, H., Zecca, L., Rosenstiel, P., Sievers, J., Deuschl, G. and Lucius, R. (2007) Inflammation in Parkinson's diseases and other neurodegenerative diseases: cause and therapeutic implications. Curr. Pharm. Des. 13, 1925-1928. https://doi.org/10.2174/138161207780858429
- Xi, J., Zhang, B., Luo, F., Liu, J. and Yang, T. (2012) Quercetin protects neuroblastoma SH-SY5Y cells against oxidative stress by inhibiting expression of Kruppel-like factor 4. Neurosci. Lett. 527, 115-120. https://doi.org/10.1016/j.neulet.2012.08.082
- Zbarsky, V., Datla, K. P., Parkar, S., Rai, D. K., Aruoma, O. I. and Dexter, D. T. (2005) Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson's disease. Free Radic. Res. 39, 1119-1125.
-
Zhao, M., Zhou, A., Xu, L. and Zhang, X. (2014) The role of TLR4-mediated PTEN/PI3K/AKT/NF-
${\kappa}B$ signaling pathway in neuroinflammation in hippocampal neurons. Neuroscience 269, 93-101. https://doi.org/10.1016/j.neuroscience.2014.03.039
Cited by
- Vaccinium bracteatum Thunb. Leaves’ polysaccharide alleviates hepatic gluconeogenesis via the downregulation of miR-137 vol.95, 2017, https://doi.org/10.1016/j.biopha.2017.09.040
- vol.25, pp.6, 2017, https://doi.org/10.4062/biomolther.2017.147
- in Chronic Restraint Stress Mice: Functional Actions and Mechanism Explorations vol.46, pp.02, 2018, https://doi.org/10.1142/S0192415X18500180
- via Protection Against Hydrogen Peroxide-Induced Oxidative Stress and Apoptosis vol.46, pp.07, 2018, https://doi.org/10.1142/S0192415X18500775
- Vaccinium bracteatum Leaf Extract Reverses Chronic Restraint Stress-Induced Depression-Like Behavior in Mice: Regulation of Hypothalamic-Pituitary-Adrenal Axis, Serotonin Turnover Systems, and ERK/Akt Phosphorylation vol.9, pp.1663-9812, 2018, https://doi.org/10.3389/fphar.2018.00604
- Thunb. methanol extract by high-performance liquid chromatography-tandem mass spectrometry vol.32, pp.6, 2018, https://doi.org/10.1002/bmc.4188
- Butyrolactone-I from Coral-Derived Fungus Aspergillus terreus Attenuates Neuro-Inflammatory Response via Suppression of NF-κB Pathway in BV-2 Cells vol.16, pp.6, 2018, https://doi.org/10.3390/md16060202
- Antipostmenopausal effects of Stauntonia hexaphylla and Vaccinium bracteatum fruit combination in estrogen-deficient rats vol.64, pp.None, 2016, https://doi.org/10.29219/fnr.v64.5233
- Antidepressant-like and Hypnotic Effects of the Herbal Extract Combination of Stauntonia hexaphylla and Vaccinium bracteatum Fruit in Mice vol.34, pp.2, 2020, https://doi.org/10.15188/kjopp.2020.04.34.2.88
- Characterization of promising natural blue pigment from Vaccinium bracteatum thunb. leaves: Insights of the stability and the inhibition of α-amylase vol.326, pp.None, 2016, https://doi.org/10.1016/j.foodchem.2020.126962
- Protective Effects of p-Coumaric Acid Isolated from Vaccinium bracteatum Thunb. Leaf Extract on Corticosterone-Induced Neurotoxicity in SH-SY5Y Cells and Primary Rat Cortical Neurons vol.9, pp.5, 2016, https://doi.org/10.3390/pr9050869
- Isolation and Analytical Method Validation for Phytocomponents of Aqueous Leaf Extracts from Vaccinium bracteatum Thunb. in Korea vol.9, pp.11, 2021, https://doi.org/10.3390/pr9111868