References
- Ambrosio, G., Zweier, J., Duilio, C., Kuppusamy, P., Santoro, G., Elia, P., Tritto, I., Cirillo, P., Condorelli, M. and Chiariello, M. (1993) Evidence that mitochondrial respiration is a source of potentially toxic oxygen free radicals in intact rabbit hearts subjected to ischemia and reflow. J. Biol. Chem. 268, 18532-18541.
- Chaitanya, G. V. and Babu, P. P. (2008) Activation of calpain, cathepsin-b and caspase-3 during transient focal cerebral ischemia in rat model. Neurochem. Res. 33, 2178-2186. https://doi.org/10.1007/s11064-007-9567-7
- Coselli, J. S., LeMaire, S. A., de Figueiredo, L. P. and Kirby, R. P. (1997) Paraplegia after thoracoabdominal aortic aneurysm repair: is dissection a risk factor? Ann. Thorac. Surg. 63, 28-35; discussion 35-36. https://doi.org/10.1016/S0003-4975(96)01029-6
- Dirnagl, U., Becker, K. and Meisel, A. (2009) Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol. 8, 398-412. https://doi.org/10.1016/S1474-4422(09)70054-7
-
Enyedi, P. and Czirjak, G. (2015) Properties, regulation, pharmacology, and functions of the
$K_2P$ channel, TRESK. Pflugers Arch. 467, 945-958. https://doi.org/10.1007/s00424-014-1634-8 - Franks, N. P. and Honore, E. (2004) The TREK K2P channels and their role in general anaesthesia and neuroprotection. Trends Pharmacol. Sci. 25, 601-608. https://doi.org/10.1016/j.tips.2004.09.003
-
Gruss, M., Bushell, T. J., Bright, D. P., Lieb, W. R., Mathie, A. and Franks, N. P. (2004) Two-pore-domain
$K^+$ channels are a novel target for the anesthetic gases xenon, nitrous oxide, and cyclopropane. Mol. Pharmacol. 65, 443-452. https://doi.org/10.1124/mol.65.2.443 - Jiruska, P., de Curtis, M. and Jefferys, J. G. (2014) Modern concepts of focal epileptic networks. Int. Rev. Neurobiol. 114, 1-7. https://doi.org/10.1016/B978-0-12-418693-4.00001-7
- Hanley, P. J., Ray, J., Brandt, U. and Daut, J. (2002) Halothane, isoflurane and sevoflurane inhibit NADH: ubiquinone oxidoreductase (complex I) of cardiac mitochondria. J. Physiol. (Lond.) 544, 687-693. https://doi.org/10.1113/jphysiol.2002.025015
-
Heurteaux, C., Guy, N., Laigle, C., Blondeau, N., Duprat, F., Mazzuca, M., Lang-Lazdunski, L., Widmann, C., Zanzouri, M. and Romey, G. (2004) TREK-1, a
$K^+$ channel involved in neuroprotection and general anesthesia. EMBO J. 23, 2684-2695. https://doi.org/10.1038/sj.emboj.7600234 - Kitano, H., Kirsch, J. R., Hurn, P. D. and Murphy, S. J. (2007) Inhalational anesthetics as neuroprotectants or chemical preconditioning agents in ischemic brain. J. Cereb. Blood Flow Metab. 27, 1108-1128. https://doi.org/10.1038/sj.jcbfm.9600410
- Kwon, B. K., Tetzlaff, W., Grauer, J. N., Beiner, J. and Vaccaro, A. R. (2004) Pathophysiology and pharmacologic treatment of acute spinal cord injury. Spine J. 4, 451-464. https://doi.org/10.1016/j.spinee.2003.07.007
- Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S. M., Ahmad, M., Alnemri, E. S. and Wang, X. (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479-489. https://doi.org/10.1016/S0092-8674(00)80434-1
- Liu, Y., Xiong, L., Chen, S. and Wang, Q. (2006) Isoflurane tolerance against focal cerebral ischemia is attenuated by adenosine A1 receptor antagonists. Can. J. Anaesth. 53, 194-201. https://doi.org/10.1007/BF03021827
- Monaco, B. A., Benicio, A., Contreras, I. S., Mingrone, L. E., Ballester, G. and Moreira, L. F. (2007) Ischemic preconditioning and spinal cord function monitoring in the descending thoracic aorta approach. Arq. Bras. Cardiol. 88, 291-296. https://doi.org/10.1590/S0066-782X2007000300007
- Mirkovic, K., Palmersheim, J., Lesage, F. and Wickman, K. (2012) Behavioral characterization of mice lacking Trek channels. Front. Behav. Neurosci. 6, 60.
- Safi, H. J., Winnerkvist, A., Miller, C. C., Iliopoulos, D. C., Reardon, M. J., Espada, R. and Baldwin, J. C. (1998) Effect of extended crossclamp time during thoracoabdominal aortic aneurysm repair. Ann. Thorac. Surg. 66, 1204-1209. https://doi.org/10.1016/S0003-4975(98)00781-4
- Sang, H., Cao, L., Qiu, P., Xiong, L., Wang, R. and Yan, G. (2006) Isoflurane produces delayed preconditioning against spinal cord ischemic injury via release of free radicals in rabbits. Anesthesiology 105, 953-960. https://doi.org/10.1097/00000542-200611000-00016
- Shabbir, M., Syed, D. N., Lall, R. K., Khan, M. R. and Mukhtar, H. (2015) Potent Anti-Proliferative, Pro-Apoptotic Activity of the Maytenus Royleanus Extract against Prostate Cancer Cells: Evidence in In-Vitro and In-Vivo Models. PLoS ONE 10, e0119859. https://doi.org/10.1371/journal.pone.0119859
- Siegelbaum, S. A., Camardo, J. S. and Kandel, E. R. (1982) Serotonin and cyclic AMP close single K+ channels in Aplysia sensory neurones. Nature 299, 413-417. https://doi.org/10.1038/299413a0
- Tong, L., Cai, M., Huang, Y., Zhang, H., Su, B., Li, Z. and Dong, H. (2013) Activation of K2P channel-TREK1 mediates the neuroprotection induced by sevoflurane preconditioning. Br. J. Anaesth. 113, 157-167.
- Tong, L., Cai, M., Huang, Y., Zhang, H., Su, B., Li, Z. and Dong, H. (2014) Activation of K(2)P channel-TREK1 mediates the neuroprotection induced by sevoflurane preconditioning. Br. J. Anaesth. 113, 157-167. https://doi.org/10.1093/bja/aet338
- Turrens, J. F. and Boveris, A. (1980) Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem. J. 191, 421-427. https://doi.org/10.1042/bj1910421
- Wakeno-Takahashi, M., Otani, H., Nakao, S., Imamura, H. and Shingu, K. (2005) Isoflurane induces second window of preconditioning through upregulation of inducible nitric oxide synthase in rat heart. Am. J. Physiol. Heart Circ. Physiol. 289, H2585-H2591. https://doi.org/10.1152/ajpheart.00400.2005
- Yang, Q., Dong, H., Deng, J., Wang, Q., Ye, R., Li, X., Hu, S., Dong, H. and Xiong, L. (2011) Sevoflurane preconditioning induces neuroprotection through reactive oxygen species-mediated up-regulation of antioxidant enzymes in rats. Anesth. Analg. 112, 931-937. https://doi.org/10.1213/ANE.0b013e31820bcfa4
- Yin, X., Su, B., Zhang, H., Song, W., Wu, H., Chen, X., Zhang, X., Dong, H. and Xiong, L. (2012) TREK1 activation mediates spinal cord ischemic tolerance induced by isoflurane preconditioning in rats. Neurosci. Lett. 515, 115-120. https://doi.org/10.1016/j.neulet.2012.03.006
- Zhang, H. P., Yuan, L. B., Zhao, R. N., Tong, L., Ma, R., Dong, H. L. and Xiong, L. (2010) Isoflurane preconditioning induces neuroprotection by attenuating ubiquitin-conjugated protein aggregation in a mouse model of transient global cerebral ischemia. Anesth. Analg. 111, 506-514. https://doi.org/10.1213/ANE.0b013e3181e45519
- Zheng, S. and Zuo, Z. (2004) Isoflurane preconditioning induces neuroprotection against ischemia via activation of P38 mitogen-activated protein kinases. Mol. Pharmacol. 65, 1172-1180. https://doi.org/10.1124/mol.65.5.1172
Cited by
- Isoflurane exposure regulates the cell viability and BDNF expression of astrocytes via upregulation of TREK-1 vol.16, pp.5, 2017, https://doi.org/10.3892/mmr.2017.7547
- Negative Influence by the Force: Mechanically Induced Hyperpolarization via K2P Background Potassium Channels vol.22, pp.16, 2021, https://doi.org/10.3390/ijms22169062