DOI QR코드

DOI QR Code

탄소나노튜브와 은나노와이어 복합 유연투명전극 필름 기술

Nanocarbon/silver Nanowire Hybrid Flexible Transparent Conducting Film Technology

  • 한중탁 (한국전기연구원 나노융합기술연구센터)
  • Han, Joong Tark (Nano Hybrid Technology Research Center, Korea Electrotechnology Research Institute)
  • 투고 : 2016.07.15
  • 심사 : 2016.07.29
  • 발행 : 2016.08.31

초록

The flexible transparent conducting films (TCFs) are required to realize flexible optoelectronic devices. 1D nanomaterials such as carbon nanotubes (CNTs), metal nanowires are good candidates to replace indium tin oxide that is currently used to fabricate transparent electrode. Particularly, silver nanowires are used to produce flexible TCFs. In this review, we introduce TCF technologies based on silver nanowires/CNTs hybrid structures. CNTs can compromise drawbacks of silver nanowires for applications in high performance TCFs for optoelectronic devices.

키워드

참고문헌

  1. J. -Y. Lee, S. T. Connor, Y. Cui, P. Peumans, Solution-processed metal nanowire mesh transparent electrodes, Nano Lett. 8 (2008) 689-692. https://doi.org/10.1021/nl073296g
  2. S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, Silver nanowire networks as flexible transparent, conducting films: Extremely high DC to optical conductivity ratios. ACS Nano 3 (2009) 1767-1774. https://doi.org/10.1021/nn900348c
  3. K. Ellmer, Past achievements and future challenges in the development of optically transparent electrodes. Nature Photon. 6 (2012) 809-817. https://doi.org/10.1038/nphoton.2012.282
  4. R. M. Mutiso, M. C. Sherott, A. R. Rathmell, B. J. Wiley, K. I. Winey, Integrating simulations and experiments to predict sheet resistance and optical transmittance in nanowire films for transparent conductors, ACS Nano 7 (2013) 7654-7663. https://doi.org/10.1021/nn403324t
  5. L. Hu, D. S. Hecht, G. Gruner, Percolation in transparent and conducting carbon nanotube Networks. Nano Lett. 4 (2004) 2513-2517. https://doi.org/10.1021/nl048435y
  6. B. Dan, G. C. Irvin, M. Pasquali, Continuous and scalable fabrication of transparent conducting carbon nanotube films. ACS Nano 3 (2009) 835-843. https://doi.org/10.1021/nn8008307
  7. P. N. Nirmalraj, P. E. Lyons, S. De, J. N. Coleman, J. J. Boland, Electrical conductivity in single-walled carbon nanotube networks. Nano Lett. 9 (2009) 3890-3895. https://doi.org/10.1021/nl9020914
  8. J. T. Han, J. S. Kim, H. D. Jeong, H. J. Jeong, S. Y. Jeong, G. -W. Lee, Modulating conductivity, environmental stability of transparent conducting nanotube films on flexible substrates by interfacial engineering. ACS Nano 4 (2010) 4551-4558. https://doi.org/10.1021/nn100650e
  9. J. Zhao, H. Sun, S. Dai, Y. Wang, J. Zhu, Electrical breakdown of nanowires, Nano Lett. 11 (2011) 4647-1651. https://doi.org/10.1021/nl202160c
  10. H. H. Khaligh, I. A. Goldthorpe, Failure of silver nanowire transparent electrodes under current flow. Nanoscale Res. Lett. 8 (2013) 235/1-6. https://doi.org/10.1186/1556-276X-8-235
  11. T. Tokuno, M. Nogi, J. Jiu, K. Suganuma, Hybrid transparent electrodes of silver nanowires and carbon nanotubes: a low-temperature solution process. Nanoscale Res. Lett. 7 (2012) 281/1-7. https://doi.org/10.1186/1556-276X-7-281
  12. D. Kim, L. Zhu, D. -J. Jeong, K. Chun, Y. -Y. Bang, S. -R. Kim, J. -H. Kim, S. -K. Oh, Transparent flexible heater based on hybrid of carbon nanotubes and silver nanowires. Carbon 63 (2013) 530-536. https://doi.org/10.1016/j.carbon.2013.07.030
  13. Y. Ahn, Y. Jeong, Y. Lee, Improved thermal oxidation stability of solution-processable silver nanowire transparent electrode by reduced graphene oxide, ACS Appl. Mater. & Interf. 4 (2012) 6410-6414. https://doi.org/10.1021/am301913w
  14. I. N. Khomanov, S. H. Dominues, H. Chou, X. Wang, C. Tan, J. -Y. Kim, H. Li, R. Piner, A. J. G. Zarbin, R. S. Ruoff, Reduced graphene oxide/ copper nanowire hybrid films as high-performance transparent electrodes. ACS Nano 7 (2013) 1811-1816. https://doi.org/10.1021/nn3060175
  15. H. -W. Tien, S. -T. Hsiao, W. -H. Liao, Y. -H. Yu, F. -C. Lin, Y. -S. Wang, S. -M. Li, C. -C. M. Ma, Using self-assembly to prepare a graphenesilver nanowire hybrid film that is transparent and electrically conductive. Carbon 58 (2013) 198-207. https://doi.org/10.1016/j.carbon.2013.02.051
  16. Y. Liu, Q. Chang, L. Huang, Transparent, flexible conducting graphene hybrid films with a subpercolating network of silver nanowires. J. Mater. Chem. C 1 (2013) 2970-2974.
  17. M. -S. Lee, K. Lee, S. -Y. Kim, H. Lee, J. Park, K. -H. Choi, H. -K. Kim, D. -G. Kim, D. -Y. Lee, S. W. Nam, J. -U. Park, High-performance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures. Nano Lett. 13 (2013) 2814-2821. https://doi.org/10.1021/nl401070p
  18. I. K. Moon, J. I. Kim, H. Lee, K. Hur, W. C. Kim, H. Lee, 2D graphene oxide nanosheets as an adhesive over-coating layer for flexible transparent conductive electrodes. Sci. Rep. 3 (2013) 1112/1-7. https://doi.org/10.1038/srep01112
  19. R. Chen, S. R. Das, C. Jeong, M. R. Khan, D. B. Janes, M. A. Alam, Co-percolating graphenewrapped silver nanowire network for high performance, highly stable transparent conducting electrodes. Adv. Func. Mater. 23 (2013) 5150-5158. https://doi.org/10.1002/adfm.201300124
  20. T. Y. Kim, Y. W. Kim, H. S. Lee, H. Kim, W. S. Yang, K. S. Suh, Uniformly interconnected silver-nanowire networks for transparent film heaters. Adv. Func. Mater. 23 (2013) 1250-1255. https://doi.org/10.1002/adfm.201202013
  21. K. Zilberberg, F. Gasse, R. Paqui, A. Polywka, A. Behrendt, S. Trost, R. Heiderhoff, P.. Gorrn, T. Riedl, Highly robust indium-free transparent conductive electrodes based on composites of silver nanowires and conductive metal oxide. Adv. Func. Mater. 24 (2013) 1671-1678.
  22. R. Zhu, C. -H. Chung, K. C. Cha, W. Yang, Y. B. Zheng, H. Zhou, T. -B. Song, C. -C. Chen, P. S. Weiss, G. Li, Y. Yang, Fused silver nanowires with metal oxide nanoparticles and organic polymers for highly transparent conductors. ACS Nano 5 (2011) 9877-9882. https://doi.org/10.1021/nn203576v
  23. A. Kim, Y. Won, K. Woo, C. -H. Kim, J. Moon, Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells. ACS Nano 7 (2013) 1081-1091. https://doi.org/10.1021/nn305491x
  24. P. Lee, J. Ham, J. Lee, S. Hong, S. Han, Y. D. Suh, S. E. Lee, J. Yeo, S. S. Lee, D. Lee, S. H. Ko, Highly stretchable or transparent conductor fabrication by a hierarchical multiscale hybrid nanocomposite, Adv. Func. Mater. 24 (2014) 5671- 5678. https://doi.org/10.1002/adfm.201400972
  25. J. Lee, J. Y. Woo, J. T. Kim, B. Y. Lee, C. -S. Han, Synergistically Enhanced stability of highly flexible silver nanowire/carbon nanotube hybrid transparent electrodes by plasmonic welding, ACS Appl. Mater. Interfaces 6 (2014) 10974-10980. https://doi.org/10.1021/am502639n
  26. J. S. Woo, J. T. Han, S. Jung, J. I. Jang, H. Y. Kim, H. J. Jeong, S. Y. Jeong, K. -J. Baeg, G. -W. Lee, Electrically Robust Metal Nanowire Network Formation by In-Situ Interconnection with Single-Walled Carbon Nanotubes, Sci. Rep. 4 (2014) 4801/1-6.