DOI QR코드

DOI QR Code

Electrochemical Reduction of Perchlorate Using Mercury Film Electrode

수은 막전극을 이용한 수용액 중 과염소산이온의 전기화학적 환원

  • Myung, Noseung (Department of biomedical Chemistry, Konkuk University Glocal Campus) ;
  • Kim, Eun Young (Department of Chemistry, Yonsei University) ;
  • Jee, Hyung-Woo (Department of Chemistry, Yonsei University) ;
  • Keum, Narae (Department of Chemistry, Yonsei University) ;
  • Rhee, Insook (Department of Chemistry, Seoul Women's University) ;
  • Paeng, Ki-Jung (Department of Chemistry, Yonsei University)
  • 명노승 (건국대학교 의생명화학과) ;
  • 김은영 (연세대학교 화학및의화학과) ;
  • 지형우 (연세대학교 화학및의화학과) ;
  • 금나래 (연세대학교 화학및의화학과) ;
  • 이인숙 (서울여자대학교 화학과) ;
  • 팽기정 (연세대학교 화학및의화학과)
  • Received : 2016.08.23
  • Accepted : 2016.08.30
  • Published : 2016.08.31

Abstract

A method for electrochemical degradation of the perchlorate anion ($ClO_4{^-}$) using mercury film electrode has been studied. Electrochemical method has relatively simple pre-treatment. However, electrochemical method should avoid interference from hydrogen evolution at the applied potential to degradation of perchlorate ion, and thus applied electrode should have large hydrogen overvoltage which suppressed the hydrogen evolution at the working reduction potential to prevent hydrogen evolution. In this study, we used mercury film electrode as a working electrode which has a large overvoltage. Ag / AgCl (sat. NaCl) was used as a reference electrode, and platinum was used as a counter electrode. Mercury film electrode was made by cyclic voltammetry (CV) method. The deposition time was decided as 10 minute, and the stability of the mercury electrode in perchlorate solution was confirmed by CV. The reduction potential of perchlorate was checked by using CV method, and decomposition of perchlorate was performed by using chronoamperometric (CA) method. Also, ion chromatography (IC) was used to confirm the degradation rates of perchlorate.

과염소산이온의 전기화학적 분해에 관한 연구가 진행되었다. 전기화학적 방법은 비교적 단순한 전처리 방법으로 가능하다. 하지만 전기화학적 방법은 과염소산이온이 분해되는 전압을 가해주었을 때 수소발생으로 인한 방해가 발생하기 때문에 사용하는 전극의 수소 과전압이 큰 것을 사용하여 수소발생을 줄이는 것이 요구되어 왔다. 본 연구에서는 수소 과전압이 큰 수은박막전극을 작업 전극으로 사용하였다. Ag / AgCl (sat. NaCl) 전극을 기준전극으로 사용하였으며 Pt를 상대전극으로 사용하였다. 수은박막전극은 순환 전압-전류법(Cyclic voltammetry, CV)으로 제작하였는데 과염소산 용액에서의 CV를 고려하여 수은박막전극의 안정성을 위해 10분 동안 전착시켰다. 과염소산이온의 환원전위는 CV 방법에 의해 설정되었고, 분해실험은 시간대 전류법 (Chronoamperometry, CA)로 시행하였다. 과염소산이온의 분해율 확인을 위해 이온 크로마토그래피(Ion chromatography, IC)를 사용하였다.

Keywords

References

  1. N. N. Greenwood and A. Earnshaw, "Chemistry of the elements", Butterworth-Heinemann, oxford, Boston, (1997).
  2. R. Srinivasan and G. Sorial, 'Removal of perchlorate and chlorate in aquatic systems using integrated technologies', Environmental engineering science, 26, 1661 (2009). https://doi.org/10.1089/ees.2009.0153
  3. National Research Council (U.S). Division of Earth Sciences, "Health implications of percholrate ingestion", National Academies Press; Washinton D.C., p. 260 (2005).
  4. M. Siddiqui, M. Le Chevallier, J. Ban, T. Phillips, and J. Pivinski, "Occurance of perchlorate and methyl tertiary butyl ether (MTBE) in groundwater of the American water system", American water works service company, Inc., Vorhees, NJ (1998).
  5. G. E. Ericksen, 'The Chilean nitrate deposits: the origin of the Chilean nitrate deposits, which contain a unique group of saline minerals, has provoked lively discussion for more than 100 years', American scientist, 71, 366-374 (1983).
  6. USEPA, "EPA Sets Reference Dose for perchlorate" (2005).
  7. P. Greiner, C. McLellan, D. Bennett, and A. Ewing, 'Occurrence of perchlorate in sodium hypochlorite', Journal of American water works association, 100, (11), 68-74 (2008). https://doi.org/10.1002/j.1551-8833.2008.tb09773.x
  8. E. T. Urbansky, 'Perchlorate chemistry: implications for analysis and remediation', Bioremediation Journal, 2, 81-95 (1998). https://doi.org/10.1080/10889869891214231
  9. C. M. V. B. Almeida, B. F. Giannetti, and T. Rabockai, 'Electrochemical study of perchlorate reduction a tin electrodes', Journal of Electroanalytical Chemistry, 422, 185-189 (1997). https://doi.org/10.1016/S0022-0728(96)04894-2
  10. M. Y. Rusanova, P. Polaskova, and M. Muzikar, 'Electrochemical reduction of perchlorate ions on platinum-activated nickel', Electrochimica Acta, 51, 3097-3101 (2006). https://doi.org/10.1016/j.electacta.2005.08.044
  11. I. Rhee, E. Y. Kim, B. K. Lee, and K.-J. Paeng, 'Electrochemical reduction of perchlorate ion on porous carbon electrodes deposited with iron nanoparticles', J. Korean Electrochem. Soc., 18(2), 81-85 (2015). https://doi.org/10.5229/JKES.2015.18.2.81
  12. G. G. Lang, N. S. Sas, M. Ujvari, and G. Horanyi, 'The kinetics of the electrochemical reduction of perchlorate ion on rhodium', Electrochimica Acta, 53, 7436-7444 (2008). https://doi.org/10.1016/j.electacta.2007.12.007
  13. D. W. Wang, H. Y. Lin, S. I. Shah, C. Y. Ni, and C. P. Huang, 'Indirect electrochemical reduction of perchlorate and nitrate in dilute aqueous solutions at the Ti-water interface', Purif. Technol., 67, 127-134 (2009). https://doi.org/10.1016/j.seppur.2009.03.008
  14. C. Lee, B. Batchelor, S. H. Park, D. S. Han, A. Abel-Wahab, and T. A. Kramer, J. Hazard. Mater., 197, 183-189 (2011). https://doi.org/10.1016/j.jhazmat.2011.09.072
  15. C. Lee, B. Batchelor, S. H. Park, D. S. Han, A. Abel-Wahab, and T. A. Kramer, 'Perchlorate reduction during electrochemivally induced pitting corrosion of zerovalent titanium (ZVT)', Adv. in Environ. Res., 1(1), 37-55 (2012). https://doi.org/10.12989/aer.2012.1.1.037
  16. S. Ma, Z.-D. Zhang, Y. Wang, H.-Y. Xu, L. Y., G. Han, K. Jack, G. Lu, and J. Zou, 'High curie temperature Bi1.85Mn0.15Te3 nanoplates', J. of the Am. Chem. Soc., 134 (46), 18920-18923 (2012). https://doi.org/10.1021/ja308933k
  17. E. Y. Kim, 'Electrochemical Reduction of Perchlorate Using Mercury Film Electrode' MS Dissertation, Yonsei University, Seoul, Korea (2013).