DOI QR코드

DOI QR Code

Directional conditionally autoregressive models

방향성을 고려한 공간적 조건부 자기회귀 모형

  • Kyung, Minjung (Department of Statistics, Duksung Women's University)
  • 경민정 (덕성여자대학교 정보통계학과)
  • Received : 2016.04.26
  • Accepted : 2016.07.03
  • Published : 2016.08.31

Abstract

To analyze lattice or areal data, a conditionally autoregressive (CAR) model has been widely used in the eld of spatial analysis. The spatial neighborhoods within CAR model are generally formed using only inter-distance or boundaries between regions. Kyung and Ghosh (2010) proposed a new class of models to accommodate spatial variations that may depend on directions. The proposed model, a directional conditionally autoregressive (DCAR) model, generalized the usual CAR model by accounting for spatial anisotropy. Properties of maximum likelihood estimators of a Gaussian DCAR are discussed. The method is illustrated using a data set of median property prices across Greater Glasgow, Scotland, in 2008.

공간통계 방법 중 지역에 대한 어떤 집합체 자료나 평균자료들을 분석하는데 일반적으로 공간적 자기회귀(conditionally autoregressive) 모형을 사용한다. 공간적 자기회귀 모형에 정의되는 공간적 이웃 소지역들은 중점의 거리나 근접성으로 정의된다. Kyung과 Ghosh (2010)는 방향에 따라서 이웃간 자기상관성의 크기가 다른 공간적 확장 모형을 제시하였다. 제안된 방향적 조건부 자기회귀(directional conditionally autoregressive) 모형은 고유 이방성을 모형화하여 기존의 CAR과정을 일반화한다. 제시한 방향적 조건부 자기회귀모형의 최대우도 추정량의 특성에 대해 설명하였고, 스코틀랜드 그레이터 글래스고우의 로그변환된 부동산 가격에 적용하여 조건부 자기회귀모형과 비교하였다.

Keywords

References

  1. Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems (with discussion), Journal of the Royal Statistical Society, Series B, 36, 192-236.
  2. Besag, J. (1975). Spatial analysis of non-lattice data, The Statistician, 24, 179-195. https://doi.org/10.2307/2987782
  3. Besag, J. and Kooperberg, C. (1995). On Conditional and Intrinsic Autoregression, Biometrika, 82, 733-746.
  4. Breslow, N. E. and Clayton, D. G. (1993). Approximate inference in generalized linear mixed models, Journal of the American Statistical Association, 88, 9-25.
  5. Brook, D. (1964). On the distinction between the conditional probability and the joint probability approaches in the specication of nearest-neighbour systems, Biometrika, 51, 481-483. https://doi.org/10.1093/biomet/51.3-4.481
  6. Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C. (1995). A limited memory algorithm for bound constrained optimization, SIAM Journal on Scientic Computing, 16, 1190-1208. https://doi.org/10.1137/0916069
  7. Cliff, A. D. and Ord, J. K. (1981). Spatial Processes: Models & Applications, Pion Limited.
  8. Cressie, N. (1993). Statistics for Spatial Data, John Wiley & Sons, Inc.
  9. Cressie, N. and Chan, N. H. (1989). Spatial modeling of regional variables, Journal of the American Statistical Association, 84, 393-401. https://doi.org/10.1080/01621459.1989.10478783
  10. Griffith, D. A. and Csillag, F. (1993). Exploring relationships between semi-variogram and spatial autoregressive models, Papers in Regional Science, 72, 283-295. https://doi.org/10.1007/BF01434277
  11. Hrafnkelsson, B. and Cressie, N. (2003). Hierarchical modeling of count data with application to nuclear fall-out, Journal of Environmental and Ecological Statistics, 10, 179-200. https://doi.org/10.1023/A:1023674107629
  12. Kyung, M. and Ghosh, S. K. (2010). Maximum likelihood estimation for directional conditionally autoregressive models, Journal of Statistical Planning and Inference, 140, 3160-3179. https://doi.org/10.1016/j.jspi.2010.04.012
  13. Lindgren, F., Rue, H., and Lindstrom, J. (2011). An explicit link between Gaussian elds and Gaussian Markov random elds: The SPDE approach, Journal of the Royal Statistical Society, Series B, 73, 423-498. https://doi.org/10.1111/j.1467-9868.2011.00777.x
  14. Mardia, K. V. and Marshall, R. J. (1984). Maximum likelihood estimation of models for residual covariance in spatial regression, Biometrika, 71, 135-146. https://doi.org/10.1093/biomet/71.1.135
  15. Miller, H. J. (2004). Tobler's rst law and spatial analysis, Annals of the Association of American Geographers, 94, 284-295. https://doi.org/10.1111/j.1467-8306.2004.09402005.x
  16. Reich, B. J., Hodges, J. S., and Carlin, B. P. (2007). Spatial analyses of periodontal data using conditionally autoregressive priors having two classes of neighbor relations, Journal of the American Statistical Association, 102, 44-55. https://doi.org/10.1198/016214506000000753
  17. Rue, H. and Tjelmeland, H. (2002). Fitting Gaussian Markov random elds to Gaussian elds, Scandinavian Journal of Statistics, 29, 31-49. https://doi.org/10.1111/1467-9469.00058
  18. Schabenberger, O. and Gotway, C. A. (2005). Statistical Methods for Spatial Data Analysis, Chapman & Hall/CRC.
  19. Song, H. R., Fuentes, M. and Ghosh, S. (2008). A comparative study of Gaussian geostatistical models and Gaussian Markov random eld models, Journal of Multivariate Analysis, 99, 1681-1697. https://doi.org/10.1016/j.jmva.2008.01.012
  20. Sweeting, T. J. (1980). Uniform asymptotic normality of the maximum likelihood estimator, Annals of Statistics, 8, 1375-1381. https://doi.org/10.1214/aos/1176345208
  21. van der Linde, A., Witzko, K.-H., and Jockel, K.-H. (1995). Spatial-temporal anlaysis of mortality using spline, Biometrics, 4, 1352-1360.
  22. Wahba, G. (1977). Practical approximate solutions to linear operator equations when the data are noisy, SIAM Journal on Numerical Analysis, 14, 651-667. https://doi.org/10.1137/0714044
  23. White, G. and Ghosh, S. K. (2008). A stochastic neighborhood conditional auto-regressive model for spatial data, Computational Statistics and Data Analysis, 53, 3033-3046.