DOI QR코드

DOI QR Code

Impact of perinatal environmental tobacco smoke on the development of childhood allergic diseases

  • Yang, Hyeon-Jong (Pediatric Allergy and Respiratory Center, Department of Pediatrics, Soonchunhyang University Hospital, Soonchunhyang University College of Medicine)
  • Received : 2015.07.17
  • Accepted : 2015.09.03
  • Published : 2016.08.15

Abstract

Allergic diseases such as asthma, allergic rhinitis, atopic dermatitis, and food allergy, are most common chronic, noncommunicable diseases in childhood. In the past few decades, the prevalence has increased abruptly worldwide. There are 2 possible explanations for the rising prevalence of allergic diseases worldwide, that an increased disease-awareness of physician, patient, or caregivers, and an abrupt exposure to unknown hazards. Unfortunately, the underlying mechanisms remain largely unknown. Despite the continuing efforts worldwide, the etiologies and rising prevalence remain unclear. Thus, it is important to identify and control risk factors in the susceptible individual for the best prevention and management. Genetic susceptibility or environments may be a potential background for the development of allergic disease, however they alone cannot explain the rising prevalence worldwide. There is growing evidence that epigenetic change depends on the gene, environment, and their interactions, may induce a long-lasting altered gene expression and the consequent development of allergic diseases. In epigenetic mechanisms, environmental tobacco smoke (ETS) exposure during critical period (i.e., during pregnancy and early life) are considered as a potential cause of the development of childhood allergic diseases. However, the causal relationship is still unclear. This review aimed to highlight the impact of ETS exposure during the perinatal period on the development of childhood allergic diseases and to propose a future research direction.

Keywords

References

  1. Gershon AS, Guan J, Wang C, To T. Trends in asthma prevalence and incidence in Ontario, Canada, 1996-2005: a population study. Am J Epidemiol 2010; 172:728-36. https://doi.org/10.1093/aje/kwq189
  2. Asher MI, Montefort S, Björksten B, Lai CK, Strachan DP, Weiland SK, et al. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. Lancet 2006;368:733-43. https://doi.org/10.1016/S0140-6736(06)69283-0
  3. Anandan C, Nurmatov U, van Schayck OC, Sheikh A. Is the prevalence of asthma declining? Systematic review of epidemiological studies. Allergy 2010;65:152-67. https://doi.org/10.1111/j.1398-9995.2009.02244.x
  4. Wong GW, Leung TF, Ko FW. Changing prevalence of allergic diseases in the Asia-pacific region. Allergy Asthma Immunol Res 2013;5:251-7. https://doi.org/10.4168/aair.2013.5.5.251
  5. Ghouri N, Hippisley-Cox J, Newton J, Sheikh A. Trends in the epidemiology and prescribing of medication for allergic rhinitis in England. J R Soc Med 2008; 101:466-72. https://doi.org/10.1258/jrsm.2008.080096
  6. Drever N, Saade GR, Bytautiene E. Fetal programming: early-life modulations that affect adult outcomes. Curr Allergy Asthma Rep 2010;10:453-9. https://doi.org/10.1007/s11882-010-0136-9
  7. Li S, Chen W, Srinivasan SR, Bond MG, Tang R, Urbina EM, et al. Childhood cardiovascular risk factors and carotid vascular changes in adulthood: the Bogalusa Heart Study. JAMA 2003;290:2271-6. https://doi.org/10.1001/jama.290.17.2271
  8. Yang HJ, Qin R, Katusic S, Juhn YJ. Population-based study on association between birth weight and risk of asthma: a propensity score approach. Ann Allergy Asthma Immunol 2013;110:18-23. https://doi.org/10.1016/j.anai.2012.10.010
  9. Merkus PJ, ten Have-Opbroek AA, Quanjer PH. Human lung growth: a review. Pediatr Pulmonol 1996;21:383-97. https://doi.org/10.1002/(SICI)1099-0496(199606)21:6<383::AID-PPUL6>3.0.CO;2-M
  10. Lane RH. Fetal programming, epigenetics, and adult onset disease. Clin Perinatol 2014;41:815-31. https://doi.org/10.1016/j.clp.2014.08.006
  11. Yang HJ, Lee SY, Suh DI, Shin YH, Kim BJ, Seo JH, et al. The Cohort for Childhood Origin of Asthma and allergic diseases (COCOA) study: design, rationale and methods. BMC Pulm Med 2014;14:109. https://doi.org/10.1186/1471-2466-14-109
  12. Papadopoulos NG, Agache I, Bavbek S, Bilo BM, Braido F, Cardona V, et al. Research needs in allergy: an EAACI position paper, in collaboration with EFA. Clin Transl Allergy 2012;2:21. https://doi.org/10.1186/2045-7022-2-21
  13. Stick SM, Burton PR, Gurrin L, Sly PD, LeSouef PN. Effects of maternal smoking during pregnancy and a family history of asthma on respiratory function in newborn infants. Lancet 1996;348:1060-4. https://doi.org/10.1016/S0140-6736(96)04446-7
  14. Miyazaki Y, Hayashi K, Imazeki S. Smoking cessation in pregnancy: psychosocial interventions and patient-focused perspectives. Int J Womens Health 2015; 7:415-27.
  15. Ahn K. The role of air pollutants in atopic dermatitis. J Allergy Clin Immunol 2014;134:993-9. https://doi.org/10.1016/j.jaci.2014.09.023
  16. Cork MJ, Danby SG, Vasilopoulos Y, Hadgraft J, Lane ME, Moustafa M, et al. Epidermal barrier dysfunction in atopic dermatitis. J Invest Dermatol 2009;129: 1892-908. https://doi.org/10.1038/jid.2009.133
  17. Hong X, Wang X. Epigenetics and development of food allergy (FA) in early childhood. Curr Allergy Asthma Rep 2014;14:460. https://doi.org/10.1007/s11882-014-0460-6
  18. Martino DJ, Prescott SL. Silent mysteries: epigenetic paradigms could hold the key to conquering the epidemic of allergy and immune disease. Allergy 2010; 65:7-15. https://doi.org/10.1111/j.1398-9995.2009.02186.x
  19. Lambrecht BN, Hammad H. Allergens and the airway epithelium response: gateway to allergic sensitization. J Allergy Clin Immunol 2014;134:499-507. https://doi.org/10.1016/j.jaci.2014.06.036
  20. Pace E, Ferraro M, Siena L, Melis M, Montalbano AM, Johnson M, et al. Cigarette smoke increases Toll-like receptor 4 and modifies lipopolysaccharide-mediated responses in airway epithelial cells. Immunology 2008;124:401-11. https://doi.org/10.1111/j.1365-2567.2007.02788.x
  21. Lanckacker EA, Tournoy KG, Hammad H, Holtappels G, Lambrecht BN, Joos GF, et al. Short cigarette smoke exposure facilitates sensitisation and asthma development in mice. Eur Respir J 2013;41:1189-99. https://doi.org/10.1183/09031936.00096612
  22. Gangl K, Reininger R, Bernhard D, Campana R, Pree I, Reisinger J, et al. Cigarette smoke facilitates allergen penetration across respiratory epithelium. Allergy 2009;64:398-405. https://doi.org/10.1111/j.1398-9995.2008.01861.x
  23. Kabesch M, Michel S, Tost J. Epigenetic mechanisms and the relationship to childhood asthma. Eur Respir J 2010;36:950-61. https://doi.org/10.1183/09031936.00019310
  24. Rehan VK, Liu J, Naeem E, Tian J, Sakurai R, Kwong K, et al. Perinatal nicotine exposure induces asthma in second generation offspring. BMC Med 2012;10: 129. https://doi.org/10.1186/1741-7015-10-129
  25. Magnus MC, Haberg SE, Karlstad O, Nafstad P, London SJ, Nystad W. Grandmother's smoking when pregnant with the mother and asthma in the grandchild: the Norwegian Mother and Child Cohort Study. Thorax 2015;70:237-43. https://doi.org/10.1136/thoraxjnl-2014-206438
  26. Akdis CA, Akdis M, Bieber T, Bindslev-Jensen C, Boguniewicz M, Eigenmann P, et al. Diagnosis and treatment of atopic dermatitis in children and adults: European Academy of Allergology and Clinical Immunology/American Academy of Allergy, Asthma and Immunology/PRACTALL Consensus Report. J Allergy Clin Immunol 2006;118:152-69. https://doi.org/10.1016/j.jaci.2006.03.045
  27. Bieber T. Atopic dermatitis. N Engl J Med 2008;358:1483-94. https://doi.org/10.1056/NEJMra074081
  28. Howell MD, Kim BE, Gao P, Grant AV, Boguniewicz M, Debenedetto A, et al. Cytokine modulation of atopic dermatitis filaggrin skin expression. J Allergy Clin Immunol 2007;120:150-5. https://doi.org/10.1016/j.jaci.2007.04.031
  29. Hinz D, Bauer M, Röder S, Olek S, Huehn J, Sack U, et al. Cord blood Tregs with stable FOXP3 expression are influenced by prenatal environment and associated with atopic dermatitis at the age of one year. Allergy 2012;67:380-9. https://doi.org/10.1111/j.1398-9995.2011.02767.x
  30. Herberth G, Bauer M, Gasch M, Hinz D, Roder S, Olek S, et al. Maternal and cord blood miR-223 expression associates with prenatal tobacco smoke exposure and low regulatory T-cell numbers. J Allergy Clin Immunol 2014;133:543-50. https://doi.org/10.1016/j.jaci.2013.06.036
  31. Wang IJ, Chen SL, Lu TP, Chuang EY, Chen PC. Prenatal smoke exposure, DNA methylation, and childhood atopic dermatitis. Clin Exp Allergy 2013;43:535-43. https://doi.org/10.1111/cea.12108
  32. Lannerö E, Wickman M, van Hage M, Bergstrom A, Pershagen G, Nordvall L. Exposure to environmental tobacco smoke and sensitisation in children. Thorax 2008;63:172-6.
  33. Saulyte J, Regueira C, Montes-Martínez A, Khudyakov P, Takkouche B. Active or passive exposure to tobacco smoking and allergic rhinitis, allergic dermatitis, and food allergy in adults and children: a systematic review and meta-analysis. PLoS Med 2014;11:e1001611. https://doi.org/10.1371/journal.pmed.1001611
  34. Feleszko W, Ruszczynski M, Jaworska J, Strzelak A, Zalewski BM, Kulus M. Environmental tobacco smoke exposure and risk of allergic sensitisation in children: a systematic review and meta-analysis. Arch Dis Child 2014;99:985-92. https://doi.org/10.1136/archdischild-2013-305444
  35. Krämer U, Lemmen CH, Behrendt H, Link E, Schafer T, Gostomzyk J, et al. The effect of environmental tobacco smoke on eczema and allergic sensitization in children. Br J Dermatol 2004;150:111-8. https://doi.org/10.1111/j.1365-2133.2004.05710.x
  36. Henderson FW, Henry MM, Ivins SS, Morris R, Neebe EC, Leu SY, et al. Correlates of recurrent wheezing in school-age children. The Physicians of Raleigh Pediatric Associates. Am J Respir Crit Care Med 1995;151:1786-93. https://doi.org/10.1164/ajrccm.151.6.7767521
  37. Burke H, Leonardi-Bee J, Hashim A, Pine-Abata H, Chen Y, Cook DG, et al. Prenatal and passive smoke exposure and incidence of asthma and wheeze: systematic review and meta-analysis. Pediatrics 2012;129:735-44. https://doi.org/10.1542/peds.2011-2196
  38. Silvestri M, Franchi S, Pistorio A, Petecchia L, Rusconi F. Smoke exposure, wheezing, and asthma development: a systematic review and meta-analysis in unselected birth cohorts. Pediatr Pulmonol 2015;50:353-62. https://doi.org/10.1002/ppul.23037
  39. Henderson AJ, Sherriff A, Northstone K, Kukla L, Hruba D. Pre- and postnatal parental smoking and wheeze in infancy: cross cultural differences. Avon Study of Parents and Children (ALSPAC) Study Team, European Longitudinal Study of Pregnancy and Childhood (ELSPAC) Co-ordinating Centre. Eur Respir J 2001;18:323-9. https://doi.org/10.1183/09031936.01.00012401
  40. Murray CS, Woodcock A, Smillie FI, Cain G, Kissen P, Custovic A, et al. Tobacco smoke exposure, wheeze, and atopy. Pediatr Pulmonol 2004;37:492-8. https://doi.org/10.1002/ppul.20019
  41. Sariachvili M, Droste J, Dom S, Wieringa M, Vellinga A, Hagendorens M, et al. Is breast feeding a risk factor for eczema during the first year of life? Pediatr Allergy Immunol 2007;18:410-7. https://doi.org/10.1111/j.1399-3038.2007.00543.x
  42. Linneberg A, Simonsen JB, Petersen J, Stensballe LG, Benn CS. Differential effects of risk factors on infant wheeze and atopic dermatitis emphasize a different etiology. J Allergy Clin Immunol 2006;117:184-9. https://doi.org/10.1016/j.jaci.2005.09.042
  43. Tanaka K, Miyake Y, Sasaki S, Ohya Y, Hirota Y; Osaka Maternal and Child Health Study Group. Maternal smoking and environmental tobacco smoke exposure and the risk of allergic diseases in Japanese infants: the Osaka Maternal and Child Health Study. J Asthma 2008;45:833-8. https://doi.org/10.1080/02770900802339742
  44. Jedrychowski W, Perera F, Maugeri U, Mrozek-Budzyn D, Miller RL, Flak E, et al. Effects of prenatal and perinatal exposure to fine air pollutants and maternal fish consumption on the occurrence of infantile eczema. Int Arch Allergy Immunol 2011;155:275-81. https://doi.org/10.1159/000320376
  45. Avila-Tang E, Elf JL, Cummings KM, Fong GT, Hovell MF, Klein JD, et al. Assessing secondhand smoke exposure with reported measures. Tob Control 2013;22: 156-63. https://doi.org/10.1136/tobaccocontrol-2011-050296
  46. Avila-Tang E, Al-Delaimy WK, Ashley DL, Benowitz N, Bernert JT, Kim S, et al. Assessing secondhand smoke using biological markers. Tob Control 2013;22:164-71. https://doi.org/10.1136/tobaccocontrol-2011-050298
  47. Walter SD. Recall bias in epidemiologic studies. J Clin Epidemiol 1990;43:1431-2. https://doi.org/10.1016/0895-4356(90)90113-4
  48. Murin S, Rafii R, Bilello K. Smoking and smoking cessation in pregnancy. Clin Chest Med 2011;32:75-91. https://doi.org/10.1016/j.ccm.2010.11.004
  49. Jhun HJ, Seo HG, Lee DH, Sung MW, Kang YD, Syn HC, et al. Self-reported smoking and urinary cotinine levels among pregnant women in Korea and factors associated with smoking during pregnancy. J Korean Med Sci 2010;25: 752-7. https://doi.org/10.3346/jkms.2010.25.5.752
  50. Dietz PM, Homa D, England LJ, Burley K, Tong VT, Dube SR, et al. Estimates of nondisclosure of cigarette smoking among pregnant and nonpregnant women of reproductive age in the United States. Am J Epidemiol 2011;173:355-9. https://doi.org/10.1093/aje/kwq381
  51. Park MB, Nam EW, Lee SK, Kim CB, Ranabhat C. The correlation of different cotinine levels with questionnaire results: a comparative study for different measurement methods of the adolescent smoking rate in Korea. Asia Pac J Public Health 2015;27:542-50. https://doi.org/10.1177/1010539514565447
  52. Spector LG, Murphy SE, Wickham KM, Lindgren B, Joseph AM. Prenatal tobacco exposure and cotinine in newborn dried blood spots. Pediatrics 2014;133: e1632-8. https://doi.org/10.1542/peds.2013-3118
  53. Yang HJ, Kim BS, Kim WK, Kim J, Kim JT, Suh DI, et al. Phenotype and endotype in pediatric asthma. Allergy Asthma Respir Dis 2014;2:85-90. https://doi.org/10.4168/aard.2014.2.2.85
  54. Rodríguez E, Baurecht H, Wahn AF, Kretschmer A, Hotze M, Zeilinger S, et al. An integrated epigenetic and transcriptomic analysis reveals distinct tissue-specific patterns of DNA methylation associated with atopic dermatitis. J Invest Dermatol 2014;134:1873-83. https://doi.org/10.1038/jid.2014.87

Cited by

  1. Better understanding of childhood asthma, towards primary prevention – are we there yet? Consideration of pertinent literature vol.6, pp.None, 2016, https://doi.org/10.12688/f1000research.11601.1
  2. International Consensus Statement on Allergy and Rhinology: Allergic Rhinitis : ICAR: Allergic Rhinitis vol.8, pp.2, 2016, https://doi.org/10.1002/alr.22073
  3. The Role of the Environmental Risk Factors in the Pathogenesis and Clinical Outcome of Atopic Dermatitis vol.2019, pp.None, 2016, https://doi.org/10.1155/2019/2450605
  4. Evaluation of cord blood immunoglobulin E and its association with maternal factors in a group of Iranian newborns vol.120, pp.8, 2019, https://doi.org/10.1002/jcb.28639
  5. Modifiable prenatal environmental factors for the prevention of childhood asthma vol.7, pp.4, 2016, https://doi.org/10.4168/aard.2019.7.4.179
  6. The association of prenatal risk factors with childhood asthma vol.56, pp.10, 2016, https://doi.org/10.1080/02770903.2018.1515224
  7. “Effects of Tobacco Smoke on Aeroallergen Sensitization and Clinical Severity among University Students and Staff with Allergic Rhinitis” vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/1692930
  8. Genetic predisposition and environmental factors associated with the development of atopic dermatitis in infancy: a prospective birth cohort study vol.179, pp.9, 2016, https://doi.org/10.1007/s00431-020-03616-5
  9. Maternal tobacco exposure during pregnancy and allergic rhinitis in offspring : A systematic review and meta-analysis vol.100, pp.34, 2016, https://doi.org/10.1097/md.0000000000026986
  10. Machine Learning for Predicting the Risk for Childhood Asthma Using Prenatal, Perinatal, Postnatal and Environmental Factors vol.9, pp.11, 2021, https://doi.org/10.3390/healthcare9111464