DOI QR코드

DOI QR Code

수제 주위의 난류 특성 변화에 대한 실험 연구

Flume experiments for turbulent flow around a spur dike

  • 전정숙 (한양대학교 공과대학 건설환경공학과) ;
  • 강석구 (한양대학교 공과대학 건설환경공학과)
  • Jeon, Jeongsook (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Kang, Seokkoo (Department of Civil and Environmental Engineering, Hanyang University)
  • 투고 : 2016.06.24
  • 심사 : 2016.07.26
  • 발행 : 2016.08.31

초록

본 연구에서는 직선 개수로 내에 설치된 수제 모형 주위에서 발생하는 난류 흐름의 특성을 알아보기 위하여 수리모형실험을 수행하였다. 실험은 Froude 수가 0.100과 0.185인 두 가지 흐름 조건에서 이루어졌다. 시간평균유속과 난류 응력을 구하기 위하여 초음파 유속계를 이용하여 3차원 순간 유속을 측정하였다. 실험 결과, 수제 하류에서 난류 응력이 큰 재순환 영역이 존재하는 것으로 확인하였다. Froude 수가 큰 경우와 작은 경우의 전반적인 평균 유속 분포는 유사하게 나타났으나, 최대 무차원 난류 응력과 최대 무차원 바닥 전단응력은 Froude 수가 증가할수록 차이를 보였다.

In this study we carried out laboratory experiments to investigate the three-dimensional turbulent flows around a spur dike installed in a straight open channel flume. The experiments are conducted under the two different Froude numbers, 0.100 and 0.185. The three-dimensional instantaneous velocities are measured using the Acoustic Doppler Velocimetry (ADV) to obtain the time-averaged velocities and the turbulence stresses. The measured flow field reveal the existence of the recirculation zones downstream of the dike, which is characterized by high turbulence stresses near its boundaries. The results show that although the overall mean flow patterns between the low and high Froude number cases are very similar to each other, there exist moderate changes in the maximum dimensionless turbulence stresses and the maximum dimensionless bed shear stress with the increase of the Froude number.

키워드

참고문헌

  1. Dey, S., and Barbhuiya, A.K. (2005). "Flow field at a vertical-wall abutment." Journal of Hydraulic Engineering, Vol. 131, No. 12, pp. 1126-1135. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:12(1126)
  2. Duan, J.G. (2009). "Mean flow and turbulence around a laboratory spur dike." Journal of Hydraulic Engineering, Vol. 135, No. 10, pp. 803-811. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000077
  3. Kang, J.G., Kim, S.J., and Yeo, H.K. (2009). "An experimental study on flow characteristic around inclined crest groyne." Journal of Korea Water Resources Association, Vol. 42, No. 9, pp. 715-724. https://doi.org/10.3741/JKWRA.2009.42.9.715
  4. Kang, J.G., Yeo, H.K., and Kim, S.J. (2005). "An experimental study on tip velocity and downstream recirculation zone of single groyne conditions." Journal of Korea Water Resources Association, Vol. 38, No. 2, pp. 143-153. https://doi.org/10.3741/JKWRA.2005.38.2.143
  5. Kim, S.J., Kang, J.G., and Yeo, H.K. (2014). "An experimental study on flow characteristics for optimal spacing suggestion of $45^{\circ}$ upward groynes." Journal of Korea Water Resources Association, Vol. 47, No. 5, pp. 459-468. https://doi.org/10.3741/JKWRA.2014.47.5.459
  6. Koken, M., and Constantinescu, G. (2008). "An investigation of the flow and scour mechanisms around isolated spur dikes in a shallow open channel: 1. Conditions corresponding to the initiation of the erosion and deposition process." Water Resources Research, Vol. 44, W08406, doi:10.1029/2007WR006489.
  7. KWRA (2009). River Design Standard and Explanation. Korea Water Resources Association., pp. 374-385.
  8. Lee, D.H., Kim, S.J., and Kang, S.K. (2015). "An experimental study on the effect of a hydraulic structure on the threedimensional flow in a meandering channel." Journal of Korea Water Resources Association, Vol. 48, No. 8, pp. 635-645. https://doi.org/10.3741/JKWRA.2015.48.8.635
  9. Lee, K.S., and Jang, C.L. (2016). "Numerical investigation of space effects of serial spur dikes on flow and bed change by using Nays2D." Journal of Korea Water Resources Association, Vol. 49, No. 3, pp. 241-251. https://doi.org/10.3741/JKWRA.2016.49.3.241
  10. Mayerle, R., Toro, F.M., and Wang, S.S.Y. (1995). "Verification of a three-dimensional numerical model simulation of the flow in the vicinity of spur dike." Jounral of Hydraulic Research, Vol. 33, No. 2, pp. 243-256. https://doi.org/10.1080/00221689509498673
  11. Noss. C., Salzmann, T., and Storchenegger, I. (2010). "Turbulent and advective momentum fluxes in streams." Water Resources Research, Vol. 46, W12518, doi:10.1029/2010WR009297.
  12. Parsheh, M., Sotiropoulos, F., and Porte-Agel, F. (2010). "Estimation of power spectra of acoustic-doppler velocimetry data contaminated with intermittent spikes." Journal of Hydraulic Engineering, Vol. 136, No. 6, pp. 368-378. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000202
  13. Rajaratnam, N., and Nwachukwu, B.A. (1983). "Flow near groinlike structures." Journal of Hydraulic Engineering, Vol. 109, No. 3, pp. 463-480. https://doi.org/10.1061/(ASCE)0733-9429(1983)109:3(463)
  14. Rusello, P.J., Lohrmann, A., Siegel, E., and Maddux, T. (2006). "Improvements in acoustic doppler velocimetry." Proceedings of the Seventh International Conference on Hydroscience and Engineering, ICHE-2006, September 10-13.
  15. Yazdi, J., Sarkardeh, H., Azmathulla, H. Md., and Ghuani, A.A. (2010). "3D simulation of flow around a single spur dike with free-surface flow" International Association for Hydro-Environment Engineering and Research, Vol. 8, No. 1, pp. 55-62.
  16. Yeo, H.G., Rho, Y.S., Kang, J.G., and Kim, S.J. (2006). "Variations of flow thalweg alignment and separation region around a groyne." Journal of Korea Water Resources Association, Vol. 39, No. 4, pp. 313-320. https://doi.org/10.3741/JKWRA.2006.39.4.313