DOI QR코드

DOI QR Code

3차원 패턴 레이저를 이용한 유영어류의 형태 및 크기 측정

A study on structural feature and size distribution of swimming fish using an 3 dimensional pattern laser

  • 양용수 (국립수산과학원 수산공학과) ;
  • 이경훈 (전남대학교 해양기술학부) ;
  • 편용범 (전남대학교 수산과학과) ;
  • 윤은아 (전남대학교 해양기술학부) ;
  • 이동길 (국립수산과학원 수산공학과) ;
  • 조현수 (군산대학교 해양생산학과)
  • YANG, Yongsu (Fisheries Engineering Division, National Institute of Fisheries Sciences) ;
  • LEE, Kyounghoon (School of Marine Technology, Chonnam National University) ;
  • PYEON, Yongbeom (Department of Fisheries Sciences, Chonnam National University) ;
  • YOON, Eun-A (School of Marine Technology, Chonnam National University) ;
  • LEE, Dong-Gil (Fisheries Engineering Division, National Institute of Fisheries Sciences) ;
  • JO, Hyun-Su (Department of Marine Science and Production, Kunsan National University)
  • 투고 : 2016.02.18
  • 심사 : 2016.05.18
  • 발행 : 2016.05.31

초록

This study aims to estimate the species, size and shape of fish using a non-contact 3 dimensional pattern laser so that this preliminary test was carried out to understand the structural feature and length of goldfish according to water turbidity and depth in the aquacultural tank. 3-D pattern laser could clearly detect its morphological shape except the caudal fin due to soft tissue. Since the sensing strength of line laser light according to depth has sufficient power, it is possible to measure its depth and structural feature in the detected range. The result showed that the measured error of individual's fork length was less than ${\pm}1%$ in the water using 3-D pattern laser, when compared with the measured value in the air.

키워드

참고문헌

  1. An HC, Lee KH, Bae JH, Bae BS and Shin JK. 2009. Estimation of the distribution density of snow crab, Chionoecetes opilio using a deep-sea underwater camera system attached on a towing sledge, J Korean Soc Technol 45, 151-156. (DOI:10.3796/KSFT.2009.45.3.151)
  2. Costa C, Loy A, Cataudella S, Davis D and Scardi M. 2006. Extracting fish size using dual underwater cameras. Aquac ultural engineering 35, 218-227. (DOI:10.1016/j.aquaeng.2006.02.003)
  3. Davis CS, Gallager SM and Solow AR. 1992. Microaggregations of oceanic plankton observed by towed video microscopy. Science 257, 230-232. (DOI:10.1126/science.257.5067.230)
  4. Doh DH, Cho KR and Cho YB. 2001. Development of an new 3D PTV using genetic algorithm, Proc, of 3rd Pacific Symp. on Flow Visualization and Image Processing, PSFV IP-3, Maui, Hawaii, Mar 18-21, 241-242.
  5. Doh DH, Kim DH, Cho KR, Cho YB, Saga T and Kobayashi T. 2002. Development of GA based 3D-PTV technique. Journal of Visualization 5, 243-254. (DOI:10.1007/bf03182332)
  6. Gudmundsson SA, Aanaes H and Larsen R. 2008. Fusion of stereo vision and Time-Of-Flight imaging for improved 3D estimation. International Journal of Intelligent Systems Technologies and Applications archive 5, 425-433. (DOI:10.1504/ijista.2008.021305)
  7. Harvey E, Cappo M, Shortis M, Robson S, Buchanan J and Speare P. 2003. The accuracy and precision of underwater measurements of length and maximum body depth of southern bluefin tuna (Thunnus maccoyii) with a stereo-video camera system. Fish Res 63, 315-326. (DOI:10.1016/s0165-7836(03)00080-8)
  8. Okamoto K, Nishio S, Kobayashi T and Saga T. 1997. Standard images for particle image velocimetry. Proc. PIV' 97-Fukui, 229-236. (DOI:10.1088/0957-0233/11/6/311)
  9. Park SW, Lee JW, Yang YS and Seo DO. 2004. A study on behaviour of giant Pacific Octopus, Parotopus dofleini to single line hook for hook design. J Korean Soc Technol 40, 1-8. https://doi.org/10.3796/KSFT.2004.40.1.001
  10. Yang YS, Lee KY, Ji SC, Jeong SJ, Kim KM and Park SW. 2011. Measurement of size and swimming speed of Bluefin tuna (Thunnus thynnus) using by a stereo vision method. J Korean Soc Technol 47, 214-221. (DOI:10.3796/KSFT.2011.47.3.214)