DOI QR코드

DOI QR Code

Shear Strength Evaluation on Multiple High-Shear Ring Anchors Using Shear Strength Model of a Single High-Shear Ring Anchor

단일 고전단 링앵커의 전단강도 모델을 이용한 다수 고전단 링앵커의 전단강도 평가

  • Kim, Mun-Gil (Division of Architecture and Urban design, Incheon National University) ;
  • Chun, Sung-Chul (Division of Architecture and Urban design, Incheon National University) ;
  • Kim, Young-Ho (Institute of R&D, Jiseung Consultant Co. Ltd.) ;
  • Sim, Hye-Jung (Division of Architecture and Urban design, Incheon National University) ;
  • Bae, Min-Seo (Division of Architecture and Urban design, Incheon National University)
  • Received : 2016.03.01
  • Accepted : 2016.06.27
  • Published : 2016.08.31

Abstract

A shear strength model for the high-shear ring anchor consisting of a steel ring and a rod was developed based on the shear tests on single high-shear ring anchors. The shear strength was found to be proportional to $f_{ck}{^{0.75}}$ which is a similar characteristic to the strength of shear connectors used in composite structures. The effects of the compressive strength of concrete, edge distance, and embedment length of rod are included in the proposed model. Comparison with 22 tests shows that the average and the coefficient of variation of test-to-prediction ratios are 1.01 and 7.57%, respectively. Push tests on the specimens having four high-shear ring anchors at each face were conducted and the measured shear strengths were compared with the predictions by the proposed model. For the specimen with an edge distance of 100 mm, a splitting failure occurred and for the specimens with an edge distance of 150 mm, a failure mode mixed with splitting and bearing occurred, which were very similar to the failures of shear tests on single high-shear ring anchors. In case of a splitting failure, the overlap of failure surfaces could be prevented by providing the longitudinal spacing of 400 mm which is four times of the edge distance. In case of a bearing failure, the failure area is less than 150 mm from the center of the anchor and therefore the overlap of failure surfaces could be prevented by providing the longitudinal spacing of 200 mm. The average of the test-to-prediction ratios of Push tests is 98%, which means that the proposed mode can be applied to predict the shear strength of the multiple high-shear rings.

이 연구에서는 롯드 앵커에 강재 링을 추가한 고전단 링앵커의 전단실험을 바탕으로 강도평가 모델을 개발하였다. 고전단 링앵커의 전단강도는 콘크리트 압축강도의 3/4 제곱에 비례하여, 강-콘크리트 합성구조에 사용되는 전단연결재와 유사한 강도 특성을 발현하였다. 콘크리트 압축강도, 측면연단거리, 롯드 묻힘깊이를 고려한 단일 고전단 링앵커 전단강도 평가 모델을 개발하였다. 22개 실험결과와 비교한 결과 [실험값]/[예측값]의 평균이 1.01 변동계수 7.57%로 나타났다. 한면에 4개씩 총 8개의 고전단 링앵커에 대한 Push 실험을 수행하고, 개발된 전단강도 모델과 비교하였다. 다수의 고전단 링앵커 Push 실험 결과, 단일 고전단 링앵커와 유사하게 측면 연단거리 100 mm에서는 쪼갬파괴가 발생되고, 측면 연단거리 150 mm에서는 쪼갬파괴와 지압파괴가 혼합되어 발생하였다. 쪼갬 파괴가 발생된 경우, 가력방향으로 고전단 링앵커 간격이 측면 연단거리의 4배인 400 mm이면 파괴면이 독립적으로 발생되어, 앵커 사이 간섭이 발생되지 않았다. 지압 파괴가 발생된 경우, 지압파괴의 영향 길이가 150 mm 미만으로 가력방향으로 고전단 링앵커의 간격이 200 mm를 확보하면 앵커 사이 상호 간섭이 발생되지 않았다. 다수 고전단 링앵커 Push실험에 의한 전단강도는 이 연구에서 개발된 예측강도의 평균 98%가 발현되었다. 개발된 전단강도 모델이 다수의 고전 단 링앵커의 전단강도 예측에도 활용될 수 있을 것으로 판단된다.

Keywords

References

  1. Japan Building Disaster Prevention Association, Seismic retrofitting design guidelines of the existing reinforced concrete buildings, Tokyo, 2001.
  2. Fujii, T., Sadasue, K., Yokoyama, T., Ishimura, M., and Minami, K., "Experimental Study on application of Hybrid Seismic Strengthening Method for Existing RC Structure with Low-Strength Concrete : (Part 1) Test Plan of Indirect Connection Element", Summaries of technical papers of Annual Meeting Architectural Institute of Japan, 2009, pp. 145-146.
  3. Ishimura, M., Sadasue, K., Yokoyama, T., Fujii, T., and Minami, K., "Experimental Study on application of Hybrid Seismic Strengthening Method for Existing RC Structure with Low-Strength Concrete : Part 2 Indirect Connection Element Test", Summaries of technical papers of Annual Meeting Architectural Institute of Japan, 2009, pp.147-148.
  4. Jung, J. S., and Lee, K. S., "A proposal of RCSF External Connection Method for strengthening of existing Mediumand Low-rise R/C Buildings", AIK Autumn Annual Conference, Vol.34, No.2, pp.503-504.
  5. Korea Concrete Institute, Concrete Design Code and Commentary, Kimoondang Publishing Company, Seoul, 2012, p.599.
  6. ACI Committee 318, "Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary", ACI, Farmington Hills, Mich, USA, 2014, p.492.
  7. Kikuta, S., Miwa, A., Mukai, K., Hatori, T., Arai, T., Yamauchi, S., Nakahara, M., Satou, N., and Nakai, S., Development of Seismic Strengthening Method by Seismic Resisting Reinforcement with Steel Tube as Cotter, Report No.30, Toda Corp., Tokyo, 2008. pp.1-8.
  8. Ishioka, T., Kikuta, S., Miwa, A., and Suzuki, S., Development of Seismic Strengthening Method by Seismic Resisting Reinforcement with Steel Tube as Cotter Part 3 Experimental Study of the Shear Wall with RM units, Report No. 34, Toda Corp., Tokyo, 2008. pp.1-8.
  9. Submitted Korean Patent, Socket shaped anchor, 10-2014-0038192, May 31st, 2014.
  10. Chun, S. C., Kim, Y. H., Jeon, S. H., Kim, J. Y., and Oh, M. H., "Evaluation on Shear Strengths of Single High-Shear Ring Anchors", Journal of the Architectural Institute of Korea, Vol.31, No.4, 2015, pp.29-38.
  11. Korean Society of Steel Construction, Korean Steel Structure Design Code-Load and Resistance Factored Design, Korean Society of Steel Construction, Seoul, 2014, p.463.
  12. Korea Concrete Institute, Concrete Design Code, Kimoondang Publishing Company, Seoul, 2012, pp.153-154, 463-498.
  13. Eurocode 4: Design of composite steel and concrete structures. Part 1-1: General rules and rules for buildings, Annex B.2 Tests on shear connectors, 2004, pp.110-112.
  14. Japan Building Disaster Prevention Association, Outside Seismic Retrofitting Manual, Japan Building Disaster Prevention Association, Tokyo, 2002, p.139.

Cited by

  1. Tensile Strength of Post-Installed High-Shear Ring Anchors (HRA) After Shear Loading vol.18, pp.4, 2018, https://doi.org/10.9712/KASS.2018.18.4.61