DOI QR코드

DOI QR Code

천연모래 치환율에 기반한 저탄소 경량골재 콘크리트 배합설계 모델

Mixture Proportioning Approach for Low-CO2 Lightweight Aggregate Concrete based on the Replacement Level of Natural Sand

  • 정연백 (현대건설 건축구조설계팀) ;
  • 양근혁 (경기대학교 플랜트.건축공학과) ;
  • 태성호 (한양대학교 건축학부)
  • Jung, Yeon-Back (Building Works Structural Design Team, Hyundai Engineering & Construction) ;
  • Yang, Keun-Hyeok (Department of Plant.Architectural Engineering, Kyonggi University) ;
  • Tae, Sung-Ho (School of Architecture & Architectural Engineering, Hanyang University)
  • 투고 : 2015.11.18
  • 심사 : 2016.06.28
  • 발행 : 2016.08.31

초록

이 연구의 목적은 인공경량골재 콘크리트의 생산에서 $CO_2$ 배출량을 저감시킬 수 있는 천연모래 치환 기반의 배합설계 절차를 제시하는 것이다. 379개의 경량골재 콘크리트 배합 데이터를 사용하여 $CO_2$ 배출량과 콘크리트의 압축강도에 대한 천연모래의 치환율의 영향을 평가하였다. Yang et al.이 제시한 배합설계절차 및 데이터베이스를 이용한 비선형 회귀 분석에 기반하여 목표 성능(압축강도, 초기 슬럼프, 공기량 및 $CO_2$ 저감률)을 만족하기 위한 천연모래의 치환율 및 콘크리트 배합설계를 결정할 수 있는 간단한 모델식을 제시하였다. 뿐만 아니라, 제안된 모델식은 주어진 경량골재 콘크리트 배합표에서 $CO_2$ 배출량을 직접 계산하는데 효율적으로 이용될 수 있다.

The purpose of this study is to propose a mixture proportioning approach based on the replacement level of natural sand for reducing $CO_2$ emissions from artificial lightweight aggregate concrete(LWAC) production. To assess the effect of natural sand on the reduction of $CO_2$ emissions and compressive strength of LWAC, a total of 379 specimens compiled from different sources were analyzed. Based on the non-linear regression analysis using the database and the previous mixture proportioning method proposed by Yang et al., simple equations were derived to determine the concrete mixture proportioning and the replacement level of natural sand for achieving the targeted performances(compressive strength, initial slump, air content, and $CO_2$ reduction ratio) of concrete. Furthermore, the proposed equations are practically applicable to straightforward determination of the $CO_2$ emissions from the provided mixture proportions of LWAC.

키워드

참고문헌

  1. ACI Committee 211. Standard Practice for Selecting Proportions for Structural Lightweight Concrete (ACI 211.2-98), American Concrete Institute, 1998, p.20.
  2. Zhang, M. H., and Gjorv, O. E., "Mechanical Properties of High-Strength Lightweight Concrete," ACI Materials Journal, Vol.88, No.3, 1991, pp.240-247.
  3. Shin, S. W., and Choi, M. S., "Applications and Prospection of Structural Lightweight Concrete," Journal of the Korea Concrete Institute, Vol.10, No.4, 1998, pp.16-26.
  4. Yang, K. H., Oh, S. J., and Song, J. K., "Mechanical Properties of Alkali-Activated Slag-Based Concrete Using Lightweight Aggregates," Journal of the Korea Concrete Institute, Vol.20, No.3, 2008, pp.405-412. https://doi.org/10.4334/JKCI.2008.20.3.405
  5. Sim, J. I., "The Influence of Unit Weight of Concrete on Size Effect of Compressive Strength, Direct Tensile Strength and Fracture Energy," PhD Dissertation, Kyonggi University 2013, p.203.
  6. Kim, J. H., Kim, S. H., Sa, S. H., Ji, S. W., Choi, S. K., and Seo, C. H., "An Experimental Study on the Physical Properties of Lightweight Concrete according to Aggregate Union," Proceeding of Korea Concrete Institute, Vol.22, No.1, 2010, pp.225-226.
  7. Seo, E. A., and Yang, K. H., "Life Cycle $CO_2$ Assessment of Light Weight Concrete according to the Replacement Level of Natural Sand," Proceeding of the Korea Concrete Institute, Vol.26, No.2, 2014, pp.669-670.
  8. Sim, J. I., and Yang, K. H., "Air Content, Workability and Bleeding Characteristics of Fresh Lightweight Aggregate Concrete," Journal of the Korea Concrete Institute, Vol.22, No.4, 2010, pp.559-566. https://doi.org/10.4334/JKCI.2010.22.4.559
  9. Sim, J. I., and Yang, K. H., "Mechanical Properties of Lightweight Aggregate Concrete according to the Substitution Rate of Natural Sand and Maximum Aggregate Size," Journal of the Korea Concrete Institute, Vol.23, No.5, 2011, pp.551-558. https://doi.org/10.4334/JKCI.2011.23.5.551
  10. Chen, H. J., Yen, T., and Lai, T. P., "A New Proportion Method of Light-Weight Aggregate Concrete based on Dividing Strength," Holand et al.(Eds), International Symposium for Structural Lightweight Aggregate Concrete, Vol.20, No.4, 1995, pp.463-471.
  11. Bogas, J. A., and Gomes, A., "A Simple Mix Design Method for Structural Lightweight Aggregate," Materials and Structures, Vol.46, 2013, pp.1919-1932. https://doi.org/10.1617/s11527-013-0029-1
  12. ISO 13315-2, Environmental Management for Concrete and Concrete Structures-Part 2: System Boundary and Inventory Data, International Organization for Standardization, Geneva, Switzerland, 2014, p.28.
  13. Jung, Y. B., and Yang, K. H., "Mixture-Proportioning Model for Low-$CO_2$ Concrete Considering the Type and Addition Level of Supplementary Cementitious Materials," Journal of the Korea Concrete Institute, Vol.27, No.4, 2015, pp.427-434. https://doi.org/10.4334/JKCI.2015.27.4.427
  14. http://www.edp.or.kr/
  15. Tae, S. H., Development of Mix Design Technique of Concrete for Reduction of $CO_2$ Emission, Technical Report, School of Architecture & Architectural Engineering, Hanyang University, 2014, p.87
  16. http://www.ecoinvent.com/
  17. Yang, K. H., Jung, Y. B., Cho, M. S., and Tae, S. H., "Effect of Supplementary Cementitious Materials on Reduction of $CO_2$ Emissions from Concrete," Journal of Cleaner Production, Vol.103, 2015, pp.774-783. https://doi.org/10.1016/j.jclepro.2014.03.018
  18. Yang, K. H., Kim, G. H., and Choi, Y. H., "An Initial Trial Mixture Proportioning Procedure for Structural Lightweight Aggregate Concrete," Construction and Building Materials, Vol.55, 2014, pp.431-439. https://doi.org/10.1016/j.conbuildmat.2013.11.108
  19. Yang, K. H., Modeling of the Mechanical Properties of Structural Lightweight Concrete based on Size Effects, Technical Report, Department of Plant․Architectural Engineering Kyonggi University, 2011, p.89.