DOI QR코드

DOI QR Code

α''-Fe16N2의 자기결정이방성

Magnetocrystalline Anisotropy of α''-Fe16N2

  • Khan, Imran (Department of Physics, Pukyong National University) ;
  • Son, Jicheol (Department of Physics, Pukyong National University) ;
  • Hong, Jisang (Department of Physics, Pukyong National University)
  • 투고 : 2016.06.10
  • 심사 : 2016.07.26
  • 발행 : 2016.08.31

초록

본 연구에서는 순수한 ${\alpha}^{{\prime}{\prime}}-Fe_{16}N_2$의 띠구조와 자기결정이방성에 대한 총 퍼텐셜 선형보강 평면파(Full-potential Linearized Augmented Plane Wave; FLAPW) 방법을 이용하여 연구하였다. 혼성화된 질소원자로 인해 Fe(4e), Fe(8h) 영역의 자기모멘트가 감소되었지만 z-축 방향의 격자 확장으로 인해 Fe(4d) 영역의 자기모멘트가 매우 커짐을 확인할 수 있었다. 각각의 Fe 영역들(4d, 4e, 8h) 스핀 자기모멘트들은 이전에 알려진 값들과 잘 일치함을 알 수 있다. 정방정계 왜곡으로 인해 $0.58 MJ/m^3$의 매우 큰 일축이방성상수를 구할 수 있었다. 게다가 1.76 MA/m의 매우 큰 자화량 또한 얻을 수 있었다. 또한 순수한 ${\alpha}^{{\prime}{\prime}}-Fe_{16}N_2$의 6.51 kOe의 예측 보자력과 71.7 MGOe의 최대에너지적을 얻을 수 있었다. 이러한 결과는 ${\alpha}^{{\prime}{\prime}}-Fe_{16}N_2$ 구조가 희토류 대체 영구자석으로 이용될 가능성이 있다는 것을 의미한다.

We investigated the magnetocrystalline anisotropy of pure ${\alpha}^{{\prime}{\prime}}-Fe_{16}N_2$ by using full-potential linearized augmented plane wave method (FLAPW). A very high magnetic moment was obtained for Fe (4d) site due to the lattice expansion in the z-direction, while the magnetic moment of Fe (4e) and (8h) site were suppressed due to hybridization with neighboring N atom. The calculated spin magnetic moments for different Fe sites (4d, 4e and 8h) were in good agreement with previously reported values. Due to the tetragonal distortion, we found a very large uniaxial anisotropy constant of $0.58MJ/m^3$. Besides, a high value of magnetization of 1.76MA/m was obtained. In additon, the estimated coercive field and maximum energy product of 6.51 kOe and 71.7 MGOe were obtained for pure ${\alpha}^{{\prime}{\prime}}-Fe_{16}N_2$. This may suggest that the ${\alpha}^{{\prime}{\prime}}-Fe_{16}N_2$ can be utilized for potential rare-earth free permanent magnet material.

키워드

참고문헌

  1. I. A. Al-Omari, R. Skomski, R. A. Thomas, D. Leslie-Pelecky, and D. J. Sellmyer, IEEE Trans. Magn. 37, 2534 (2001). https://doi.org/10.1109/20.951226
  2. A. M. Gabay, M. Marinescu, J. Liu, and G. C. Hadjipanayis, IEEE Trans. Magn. 44, 4218 (2008). https://doi.org/10.1109/TMAG.2008.2001540
  3. M. Sagawa, S. Fujimura, H. Yamamoto, and Y. Matsuura, IEEE Trans. Magn. 20, 1584 (1984). https://doi.org/10.1109/TMAG.1984.1063214
  4. X. B. Liu and Z. Altounian, J. Appl. Phys. 111, 07A701 (2012). https://doi.org/10.1063/1.3670054
  5. T. K. Kim and M. Takahashi, Appl. Phys. Lett. 20, 492 (1972). https://doi.org/10.1063/1.1654030
  6. K. Nakajima and S. Okamoto, J. Appl. Phys. 65, 4357 (1989). https://doi.org/10.1063/1.343272
  7. Y. Sugita, K. Mitsuoka, M. Komuro, H. Hoshiya, Y. Kozono, and M. Hanazono, J. Appl. Phys. 70, 5977 (1991). https://doi.org/10.1063/1.350067
  8. H. Takahashi, M. Igarashi, A. Kaneko, H. Miyajima, and Y. Sugita, IEEE Trans. Magn. 35, 2982 (1999). https://doi.org/10.1109/20.801054
  9. J. Nian, M. S. Osofsky, V. Lauter, L. F. Allard, X. Li, K. L. Jensen, H. Ambaye, E. L. Curzio, and J. P. Wang, Phys. Rev. B 84, 245310 (2011). https://doi.org/10.1103/PhysRevB.84.245310
  10. E. Kita, K. Shibata, H. Yanagihara, Y. Sasaki, and M. Kishimoto, J. Magn. Magn. Mater. 310, 2411 (2007). https://doi.org/10.1016/j.jmmm.2006.10.1009
  11. M. Widenmeyer, L. Shlyk, A. Senyshyn, R. Monig, and R. Niewa, Z. Anorg. Allg. Chem. 641, 348 (2015). https://doi.org/10.1002/zaac.201500013
  12. S. Uchida, T. Kawakatsu, A. Sekine, and T. Ukai, J. Magn. Magn. Mater. 310, 1796 (2007). https://doi.org/10.1016/j.jmmm.2006.10.708
  13. N. Ji, X. Liu, and J. P. Wang, New J. Phy. 12, 063032 (2010). https://doi.org/10.1088/1367-2630/12/6/063032
  14. L. Ke, K. D. Belashchenko, M. Schilfgaarde, T. Kotani, and V. P. Antropov, Phys. Rev. B 88, 024404 (2013). https://doi.org/10.1103/PhysRevB.88.024404
  15. H. Takahashi, H. Shoji, and M. Takahashi, J. Magn. Magn. Mater. 174, 57 (1997). https://doi.org/10.1016/S0304-8853(97)00213-8
  16. T. Weber, L. Wit, F. W. Saris, and P. Schaaf, Thin Solid Films 279, 216 (1996). https://doi.org/10.1016/0040-6090(95)08176-3
  17. Y. Jiang, M. A. Mehedi, E. Fu, Y. Wang, and J. P. Wang, J. Appl. Phys. 115, 17A753 (2014). https://doi.org/10.1063/1.4868492
  18. S. P. Bennett, M. Feygenson, Y. Jiang, B. J. Zande, X. Zhang, S. G. Sankar, J. P. Wang, and V. Lauter, J. Minerals, Metals & Materials Society 68, 1572 (2016). https://doi.org/10.1007/s11837-016-1886-1
  19. H. Sawada, A. Nogami, and T. Matsumiya, Phys. Rev. B 50, 10004 (1994). https://doi.org/10.1103/PhysRevB.50.10004
  20. E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys. Rev. B 24, 864 (1981).
  21. M. Weinert, E. Wimmer, and A. J. Freeman, Phys. Rev. B 26, 4571 (1982). https://doi.org/10.1103/PhysRevB.26.4571
  22. M. Weinert, J. Math. Phys. 22, 2433 (1981). https://doi.org/10.1063/1.524800
  23. D. D. Koelling and B. N. Harmon, J. Phys. C: Solid State Phys. 10, 3107 (1977). https://doi.org/10.1088/0022-3719/10/16/019
  24. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  25. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188
  26. H. Tanaka, H. Harima, T. Yamamoto, H. K. Yoshida, Y. Nakata, and Y. Hirotsu, Phys. Rev. B 62, 15042 (2000). https://doi.org/10.1103/PhysRevB.62.15042
  27. X. Wang, R. Wu, D. Wang, and A. J. Freeman, Phys. Rev. B 54, 61 (1996). https://doi.org/10.1103/PhysRevB.54.61
  28. S. C. Hong, W. S. Yun, and R. Wu, Phys. Rev. B 79, 054419 (2009). https://doi.org/10.1103/PhysRevB.79.054419
  29. Y. Jiang, M. A. Mehedi, E. Fu, Y. Wang, L. F. Allard, and J. P. Wang, Sci. Rep. 6, 25436 (2016). https://doi.org/10.1038/srep25436

피인용 문헌

  1. Enhancement of the Magnetic Anisotropy in Rare-Earth-Free Multilayer Fe16N2/Ag/Fe16N2 and Fe16N2/Au/Fe16N2 vol.72, pp.11, 2018, https://doi.org/10.3938/jkps.72.1343