DOI QR코드

DOI QR Code

Trackside to Train Communication Using Infrared System

적외선 시스템을 이용한 지상차상통신

  • Received : 2016.05.30
  • Accepted : 2016.08.24
  • Published : 2016.08.31

Abstract

The conventional track to train communication is commonly using radio based equipment such as transponder or balise to transmit the data. However, there are some drawbacks of the conventional equipment, for example multipath fading, source of bandwidth limitation, and interference from other users. Moreover, the radio based equipment is very expensive when installed in large numbers. To address these problems, we propose infrared system for trackside to train communication system. Infrared system offers a transmission of data to train and it can be processed to obtain at least a train location. Infrared communication protocol provides practical wireless data communication for direct dedication configuration. Furthermore, on the pole configuration the infrared system provides an abundant bandwidth, an economically sensible, minimalized installation of equipment on the trackside and reliability for heavy rain environment. This paper concentrates on the communication function and measurement performance evaluation. The proposed trackside to train communication system covers about 6 meters between infrared receiver and infrared transmitter, whereas the half angle of the transmitter is set to $19.65^{\circ}$ and the receiver angle is $15^{\circ}$.

열차에서 지상차상통신은 데이터를 전송하기 위해 트랜스폰더 또는 발리스 (balise) 와 같은 무선장비를 일반적으로 사용하고 있다. 그러나, 이러한 종래의 방식에는 다중경로 페이딩, 대역폭소스 제한, 다른 사용자들로부터의 간섭 등 과같은 단점들이 있다. 게다가 이러한 장비가 많이 설치될 경우에는 비용이 많이 든다. 이러한 문제를 해결하기 위하여 적외선 통신 시스템을 제안하고자 한다. 적외선 시스템을 사용하여 열차의 위치 같은 데이타를 열차로 전송 할 수 있다. 적외선 통신 프로토콜은 direct dedication configuration에 실용적인 무선 데이터 통신을 제공할 수 있다. 뿐만 아니라, pole configuration경우에 적외선 시스템은 풍부한 대역폭 그리고 경제적 장비설치비용, 폭우 때 장비이용의 신뢰성까지 제공한다. 본 논문에서는 통신기능과 실행평가측정 (measurement performance evaluation)에 대한 분석을 다루었다. 제안된 지상차상통신 시스템에는 적외선 수신기 및 적외선 송신기 사이를 약 6미터 까지 전송가능하며, 송신기의 반각은 19.65도로, 수신각은 15도로 설정되었다.

Keywords

References

  1. A. Sugiana, M. Sanyoto, Parwito, Y. Agrianto, K.S. Lee and I. Choy, "Train Speed Control in Slope Area Using Infrared System," J. of the Korea Institute of Electronic Communication Sciences, vol. 11, no. 6, 2016, pp. 635-644. https://doi.org/10.13067/JKIECS.2016.11.6.635
  2. B. Kwon, H. Jung, K. Lee and C. Li, "Study on Test Methods and Procedures of Hybrid Track Circuit," J. of the Korea Institute of Electronic Communication Sciences, vol. 9, no. 3, 2014, pp. 335-342. https://doi.org/10.13067/JKIECS.2014.9.3.335
  3. J. Pachl, Railway Operationand Control. 2nd Edition, Mountlake Terrace: VTD Rail Publishing, 2009.
  4. K. Katsuta, "Cost Effective Railway Signaling by Wireless Communication among Onboard Controllers and Switch Controllers," IET Intelligent Transport Systems, vol. 9, no. 1, 2015, pp. 67-74. https://doi.org/10.1049/iet-its.2013.0169
  5. M. Lauer and D. Stein, "A Train Localization Algorithm for Train Protection Systems of the Future," Intelligent Transportation System, vol. 16, no. 12, 2014, pp. 970-979.
  6. H. Yoshimura and S. Yoshikoshi, Railway Signal. 4th edition, Tokyo, 1983.
  7. J. Catrain, Automatic train protection and control on european railway signaling. 1st Edition, London: A&C Black, 1995.
  8. S. Oh, Y. Yoon, and Y. Kim, "Automatic Protection Simulation for Radio Based Train Control System," Information Science and Applications(ICISA) Int. Conf., Suwon, Korea, May 23-25, 2012, pp. 1-4.
  9. H. Jung, Y. Ko, C. Li and K. Lee, "Study on Precise Positioning using Hybrid Track Circuit System in Metro," Journal of the KIECS, vol. 8, no. 3, 2013, pp. 471-477.
  10. R. Rob Otte, L. P. de Jong, and A. H. M. van Roermund, Low-Power Wireless Infrared Communications. New-York: Springer, 1999.
  11. J. M. Kahn and J. R. Barry, "," Proc. of the IEEE, vol. 85 no. 2, 1997, pp. 265-298. https://doi.org/10.1109/5.554222
  12. S. Hranilovic, Wireless Optical Communication Systems. NewYork: Springer, 2005.
  13. J. R. Barry, Wireless Infrared Communications, NewYork: Springer, 1994.
  14. K. Yoshimoto, K. Kataoka, and K. Komaya, "A Feasibility Study of Train Automatic Stop Control using Range Sensors," Intelligent Transportation Systems Conf. Proc., Oakland, USA, Aug. 25-29, 2001, pp. 802-807.
  15. R. J. Green, "Secure Communications: the Infrared Alternative," Int. Conf. of Transparent Optical Network(ICTON) Mediterranean Winter, Sousse, Tunisia, Dec. 6-8, 2007, pp. 1-4.
  16. A. Rogalski and K. Chrzanowski, "Infrared Devices and Techniques," OPTO-Electronics Review, vol. 10, no. 2, 2002, pp. 111-136.
  17. M. Uysal and H. Nouri, "Optical Wireless Communications-An Emerging Technology," Int. Conf. of Transparent Optical Network(ICTON), Graz, Austria, July 6-10, 2014, pp. 1-7.
  18. Willey Encyclopedia of Telecommunications, New Jersey, USA: John Willey & Sons, 2003.
  19. S. Williams, "IrDA: Past, Present and Future," IEEE Personal Communications, vol. 7, issue 1, Aug. 6, 2000, pp. 11-19. https://doi.org/10.1109/98.824566
  20. V. Vitsas, O. Barker, and A. C. Boucouvalas, "IrDA Infrared Wireless Communications: Protocol Throughput Optimization," IEEE Wireless Communications, vol. 10 issue 2, Apr. 29, 2003, pp. 22-29.