DOI QR코드

DOI QR Code

Effects of Precursor Co-Precipitation Temperature on the Properties of LiNi1/3Co1/3Mn1/3O2 Powders

전구체 공침 온도가 LiNi1/3Co1/3Mn1/3O2 분말의 특성에 미치는 영향

  • Choi, Woonghee (Department of Advanced Materials Engineering, Korea Polytechnic University) ;
  • Kang, Chan Hyoung (Department of Advanced Materials Engineering, Korea Polytechnic University)
  • 최웅희 (한국산업기술대학교 신소재공학과) ;
  • 강찬형 (한국산업기술대학교 신소재공학과)
  • Received : 2016.07.21
  • Accepted : 2016.08.11
  • Published : 2016.08.28

Abstract

$Ni_{1/3}Co_{1/3}Mn_{1/3}(OH)_2$ powders have been synthesized in a continuously stirred tank reactor via a co-precipitation reaction between aqueous metal sulfates and NaOH using $NH_4OH$ as a chelating agent. The co-precipitation temperature is varied in the range of $30-80^{\circ}C$. Calcination of the prepared precursors with $Li_2CO_3$ for 8 h at $1000^{\circ}C$ in air results in Li $Ni_{1/3}Co_{1/3}Mn_{1/3}O_2$ powders. Two kinds of obtained powders have been characterized by X-ray diffraction (XRD), scanning electron microscopy, particle size analyzer, and tap density measurements. The co-precipitation temperature does not differentiate the XRD patterns of precursors as well as their final powders. Precursor powders are spherical and dense, consisting of numerous acicular or flaky primary particles. The precursors obtained at 70 and $80^{\circ}C$ possess bigger primary particles having more irregular shapes than those at lower temperatures. This is related to the lower tap density measured for the former. The final powders show a similar tendency in terms of primary particle shape and tap density. Electrochemical characterization shows that the initial charge/discharge capacities and cycle life of final powders from the precursors obtained at 70 and $80^{\circ}C$ are inferior to those at $50^{\circ}C$. It is concluded that the optimum co-precipitation temperature is around $50^{\circ}C$.

Keywords

References

  1. D.-C. Li, T. Muta, L.-Q. Zhang, M. Yoshio and H. Noguchi: J. Power Sources, 132 (2004) 150. https://doi.org/10.1016/j.jpowsour.2004.01.016
  2. D. Li, Y. Sasaki, M. Kageyama, K. Kobayakawa and Y. Sato: J. Power Sources, 148 (2005) 85. https://doi.org/10.1016/j.jpowsour.2005.02.006
  3. S. H. Park, C. S. Yoon, S. G. Kang, H.-S. Kim, S.-I. Moon and Y.-K. Sun: Electrochim. Acta, 49 (2004) 557. https://doi.org/10.1016/j.electacta.2003.09.009
  4. C. J. Han, J. H. Yoon, W. I. Cho and Ho Jang: J. Power Sources, 136 (2004) 132. https://doi.org/10.1016/j.jpowsour.2004.05.006
  5. S. Patoux and M. M. Doeff: Electrochem. Comm., 6 (2004) 767. https://doi.org/10.1016/j.elecom.2004.05.024
  6. S. Jouanneau, K. W. Eberman, L. J. Krause and J. R. Dahn: J. Electrochem. Soc., 150 (2003) A1637. https://doi.org/10.1149/1.1622956
  7. S.-H. Park, S.-H. Kang, I. Belharouak, Y.-K. Sun and K. Amine: J. Power Sources, 177 (2008) 177. https://doi.org/10.1016/j.jpowsour.2007.10.062
  8. D. Wang, I. Belharouak, G. M. Koenig, Jr., G. Zhou and K. Amine: J. Mater. Chem., 21 (2011) 9290. https://doi.org/10.1039/c1jm11077b
  9. M.-H. Lee, Y.-J. Kang, S.-T. Myung and Y.-K. Sun: Electrochim. Acta, 50 (2004) 939. https://doi.org/10.1016/j.electacta.2004.07.038
  10. A. van Bommel and J. R. Dahn: J. Electrochem. Soc., 156 (2009) A362. https://doi.org/10.1149/1.3079366
  11. A. van Bommel and J. R. Dahn: Chem. Mater., 21 (2009) 1500. https://doi.org/10.1021/cm803144d
  12. Y. Yang, S. Xu, M, Xie, Y. He, G. Huang and Y. Yang: J. Alloys and Compounds, 619 (2015) 846. https://doi.org/10.1016/j.jallcom.2014.08.152
  13. D. Kang, N. Arailym, J. E. Chae and S.-S. Kim: J. Korean Electrochem. Soc., 16 (2013) 191. https://doi.org/10.5229/JKES.2013.16.4.191
  14. W. Choi, S.-R. Park and C. H. Kang: J. Korean Powder Metall. Inst., 23 (2016) 136 (Korean). https://doi.org/10.4150/KPMI.2016.23.2.136
  15. D.-L. Vu and J.-W. Lee: Korean J. Chem. Eng., 33 (2016) 514. https://doi.org/10.1007/s11814-015-0154-3
  16. K. Wu, F. Wang, L. Gao, M.-R. Li, L. Xiao, L. Zhao, S. Hu, X, Wang, Z. Xu and Q. Wu: Electrochim. Acta, 75 (2012) 393. https://doi.org/10.1016/j.electacta.2012.05.035
  17. Z. Xu, L. Xiao, F. Wang, K. Wu, L. Zhao, M.-R. Li, H.-L. Zhang, Q. Wu and J. Wang: J. Power Sources, 248 (2014) 180. https://doi.org/10.1016/j.jpowsour.2013.09.064
  18. A. Rougier, P. Gravereau and C. Delmas: J. Electrochem. Soc., 143 (1996) 1168. https://doi.org/10.1149/1.1836614
  19. S. W. Oh, S. H. Park, C.-W. Park and Y.-K. Sun: Solid State Ionics, 171 (2004) 167. https://doi.org/10.1016/j.ssi.2004.04.012
  20. D. D. MacNeil, Z. Lu and J. R. Dahn: J. Electrochem. Soc., 149 (2002) A1332. https://doi.org/10.1149/1.1505633
  21. T. Ohzuku, A. Ueda and M. Nagayama: J. Electrochem. Soc., 140 (1993) 1862. https://doi.org/10.1149/1.2220730
  22. R. W. Balluffi, S. M. Allen and W. C. Carter: Kinetics of Materials, Wiley-Interscience, Hoboken, New Jersey (2005) 365.
  23. I. M. Lifshitz and V. V. Slyozov: J. Phys. Chem. Solids, 19 (1961) 35. https://doi.org/10.1016/0022-3697(61)90054-3
  24. C. Wagner: Z. Elektrochem., 65 (1961) 581.
  25. C. H. Kang and D. N. Yoon: Metall. Trans. A, 12 (1981) 65. https://doi.org/10.1007/BF02648509