DOI QR코드

DOI QR Code

그래핀 산화물 분말 첨가에 의한 비스무스 텔루라이드 기지 복합재료의 열전에너지변환 특성 고찰

Investigation on the Thermoelectric Properties of Bismuth Telluride Matrix Composites by Addition of Graphene Oxide Powders

  • 김경태 (한국기계연구원 부설 재료연구소, 분말기술연구실) ;
  • 민태식 (한국기계연구원 부설 재료연구소, 분말기술연구실) ;
  • 김동원 (한국기계연구원 부설 재료연구소, 분말기술연구실)
  • Kim, Kyung Tae (Powder Technology Department, Korea Institute of Materials Science) ;
  • Min, Taesik (Powder Technology Department, Korea Institute of Materials Science) ;
  • Kim, Dong Won (Powder Technology Department, Korea Institute of Materials Science)
  • 투고 : 2016.08.01
  • 심사 : 2016.08.16
  • 발행 : 2016.08.28

초록

Graphene oxide (GO) powder processed by Hummer's method is mixed with p-type $Bi_2Te_3$ based thermoelectric materials by a high-energy ball milling process. The synthesized GO-dispersed p-type $Bi_2Te_3$ composite powder has a composition of $Bi_{0.5}Sb_{1.5}Te_3$ (BSbT), and the powder is consolidated into composites with different contents of GO powder by using the spark plasma sintering (SPS) process. It is found that the addition of GO powder significantly decreases the thermal conductivity of the pure BSbT material through active phonon scattering at the newly formed interfaces. In addition, the electrical properties of the GO/BSbT composites are degraded by the addition of GO powder except in the case of the 0.1 wt% GO/BSbT composite. It is found that defects on the surface of GO powder hinder the electrical transport properties. As a result, the maximum thermoelectric performance (ZT value of 0.91) is achieved from the 0.1% GO/BSbT composite at 398 K. These results indicate that introducing GO powder into thermoelectric materials is a promising method to achieve enhanced thermoelectric performance due to the reduction in thermal conductivity.

키워드

참고문헌

  1. R. Venkatasubramanian, E. Silvola, T. Colpitts and B. O'Quinn: Science, 413 (2001) 297.
  2. A.J. Minnich, M.S. Dresselhaus, Z.F.Ren and G.Chen: Energy Environ. Sci., 2 (2009) 466. https://doi.org/10.1039/b822664b
  3. H. Alam and S. Ramakrishna: Nano Energy, 2 (2013) 190. https://doi.org/10.1016/j.nanoen.2012.10.005
  4. S.I.Kim, K.H.Lee, H.A.Mun, H.S.Kim, S.W.Hwang, J.W. Roh, D.J.Yang, W.H.Shin, X.S.Li, Y.H.Lee, G.J. Snyder and S.W.Kim: Science, 348 (2015) 109. https://doi.org/10.1126/science.aaa4166
  5. S.A. Humphry-Baker and C. A. Schuh: Acta Mater., 75 (2014) 167. https://doi.org/10.1016/j.actamat.2014.04.032
  6. Y. Liu, M. Zhou and J. He: Scripta Mater., 111 (2016) 39. https://doi.org/10.1016/j.scriptamat.2015.06.031
  7. K.T.Kim, S.Y.Choi, E.H.Shin, K.S.Moon, H.Y.Koo, G.Lee and G.H.Ha: Carbon, 52 (2013) 541. https://doi.org/10.1016/j.carbon.2012.10.008
  8. Q. Lognone and F. Gascoin: J Alloy Compd., 63 (2015) 107.
  9. K.T.Kim, I. Son and G.H.Ha: J. Korean Powder Metall. Inst., 20 (2013) 345. https://doi.org/10.4150/KPMI.2013.20.5.345
  10. B. Liang, Z. Song, M. Wang, L. Wang and W. Jiang: J. Nanomater., (2013) Article ID 210767, 5pages, http://dx.doi.org/10.1155/2013/210767
  11. M. Hong, Z. G. Chen, L. Yang and J. Zou: Nano Energy, 20 (2016) 144. https://doi.org/10.1016/j.nanoen.2015.12.009

피인용 문헌

  1. The Preparation and Growth Mechanism of the Recovered Bi2Te3 Particles with Respect to Surfactants vol.24, pp.2, 2017, https://doi.org/10.4150/KPMI.2017.24.2.141