DOI QR코드

DOI QR Code

Properties of the Dye Sensitized Solar Cell with Localized Surface Plasmon Resonance Inducing Au Nano Thin Films

  • Noh, Yunyoung (Department of Materials Science and Engineering, University of Seoul) ;
  • Kim, Kwangbae (Department of Materials Science and Engineering, University of Seoul) ;
  • Choi, Minkyoung (Department of Materials Science and Engineering, University of Seoul) ;
  • Song, Ohsung (Department of Materials Science and Engineering, University of Seoul)
  • Received : 2016.04.28
  • Accepted : 2016.07.01
  • Published : 2016.08.27

Abstract

We improve the energy conversion efficiency (ECE) of a dye sensitized solar cell (DSSC) by preparing a working electrode (WE) with localized surface plasmon resonance (LSPR) by inducing Au thin films with thickness of 0.0 to 5.0 nm, deposited via sputtering. Field emission scanning electron microscopy and atomic force microscopy were used to characterize the microstructure of the blocking layer (BL) of the Au thin films. Micro-Raman measurement was employed to confirm the LSPR effect, and a solar simulator and potentiostat were used to evaluate the photovoltaic properties, including the impedance and the I-V of the DSSC of the Au thin films. The results of the microstructural analysis confirmed that nano-sized Au agglomerates were present at certain thicknesses. The photovoltaic results show that the ECE reached a value of 5.34% with a 1-nm thick-Au thin film compared to the value of 5.15 % without the Au thin film. This improvement was a result of the increase in the LSPR of the $TiO_2$ layer that resulted from the Au thin film coating. Our results imply that the ECE of a DSSC may be improved by coating with a proper thickness of Au thin film on the BL.

Keywords

References

  1. B. O’Regan and M. Gratzel, Nature, 353, 737 (1991). https://doi.org/10.1038/353737a0
  2. M. K. Nazeeruddin, A. Kay, R. Humpbry-Baker, E. Miiller, P. Liska, N. Vlachopoulos and M. Gratzel, J. Am. Chem. Soc., 115, 6382 (1993). https://doi.org/10.1021/ja00067a063
  3. H. Jen, M. Hung, L. Li, H. Wu, W. Huang, P. Cheng and E. W. Diau, ACS Appl. Mater. Interfaces, 5, 10098 (2013). https://doi.org/10.1021/am402687j
  4. M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, Prog. Photovoltaics: Res. Appl., 22, 701 (2014). https://doi.org/10.1002/pip.2525
  5. J. Dewalque, R. Cloot, F. Mathis, O. Dubreuil, N. Krins and C. Henrist, J. Mater. Chem., 21, 7356 (2011). https://doi.org/10.1039/c1jm10288e
  6. E. Palomares, J. N. Clifford, S. A. Haue, T. Lutz and J. R. Durrant, Chem. Commun., 2002, 1464 (2002).
  7. Y. Noh, M. Choi and O. Song, J. Korean Ceram. Soc., 52, 380 (2015). https://doi.org/10.4191/kcers.2015.52.5.380
  8. H. Koo, Y. J. Kim, Y. H. Lee, W. I. Lee, K. Kim and N. G. Park, Adv. Mater., 20, 195 (2008). https://doi.org/10.1002/adma.200700840
  9. N. Yao, J. Huang, K. Fu, S. Liu, D. E, Y. Wang, X. Xu, M. Zhu and B. Cao, J. Power Sources, 267, 405 (2014). https://doi.org/10.1016/j.jpowsour.2014.05.135
  10. L. Qiao, D. Wang, L. Zuo, Y. Ye, J. Qian, H. Chen and S. He, Appl. Energy, 88, 848 (2011). https://doi.org/10.1016/j.apenergy.2010.09.021
  11. H. Jung, B. Koo, J. Kim, T. Kim, H. J. Son, B. Kim, J. Y. Kim, D. Lee, J. Cho and M. J. Ko, ACS Appl. Mater. Interfaces, 6, 19191 (2014). https://doi.org/10.1021/am5051982
  12. J. Xu, X. Xiao, F. Ren, W. Wu, Z. Dai, G. Cai, S. Zhang, J. Zhou, F. Mei and C. Jiang, Nanoscale Res. Lett., 7, 239 (2012). https://doi.org/10.1186/1556-276X-7-239