DOI QR코드

DOI QR Code

Catalytic Properties of the Cobalt Silicides for a Dye-Sensitized Solar Cell

염료감응형 태양전지용 코발트실리사이드들의 촉매 물성

  • Kim, Kwangbae (Department of Materials Science and Engineering, University of Seoul) ;
  • Noh, Yunyoung (Department of Materials Science and Engineering, University of Seoul) ;
  • Song, Ohsung (Department of Materials Science and Engineering, University of Seoul)
  • 김광배 (서울시립대학교 신소재공학과) ;
  • 노윤영 (서울시립대학교 신소재공학과) ;
  • 송오성 (서울시립대학교 신소재공학과)
  • Received : 2016.04.28
  • Accepted : 2016.06.28
  • Published : 2016.08.27

Abstract

The cobalt silicides were investigated for employment as a catalytic layer for a DSSC. Using an E-gun evaporation process, we prepared a sample of 100 nm-thick cobalt on a p-type Si (100) wafer. To form cobalt silicides, the samples were annealed at temperatures of $300^{\circ}C$, $500^{\circ}C$, and $700^{\circ}C$ for 30 minutes in a vacuum. Four-point probe, XRD, FE-SEM, and CV analyses were used to determine the sheet resistance, phase, microstructure, and catalytic activity of the cobalt silicides. To confirm the corrosion stability, we also checked the microstructure change of the cobalt silicides after dipping into iodide electrolyte. Through the sheet resistance and XRD results, we determined that $Co_2Si$, CoSi, and $CoSi_2$ were formed successfully by annealing at $300^{\circ}C$, $500^{\circ}C$, and $700^{\circ}C$, respectively. The microstructure analysis results showed that all the cobalt silicides were formed uniformly, and CoSi and $CoSi_2$ layers were very stable even after dipping in the iodide electrolyte. The CV result showed that CoSi and $CoSi_2$ exhibit catalytic activities 67 % and 54 % that of Pt. Our results for $Co_2Si$, CoSi, and $CoSi_2$ revealed that CoSi and $CoSi_2$ could be employed as catalyst for a DSSC.

Keywords

References

  1. B. O'Regan and M. Gratzel, Nature, 353, 737 (1991). https://doi.org/10.1038/353737a0
  2. C. Shim, Y. Kim, H. Lee and H. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 60, 114 (2011).
  3. Z. Li, B. Ye, X. Hu, X. Ma, X. Zhang and Y. Deng, Electrochem. Commun., 11, 1768 (2009). https://doi.org/10.1016/j.elecom.2009.07.018
  4. E. Olsen, G. Hagen and S. E. Lindquist, Sol. Energ. Mat. Sol. C, 63, 267 (2000). https://doi.org/10.1016/S0927-0248(00)00033-7
  5. X. Chen, Q. Tang, B. He, L. Lin and L. Yu, Angew. Chem. Int. Ed., 53, 10799 (2014). https://doi.org/10.1002/anie.201406982
  6. J. Liu, Q. Tang and B. He, J. Power Sources, 268, 56 (2014). https://doi.org/10.1016/j.jpowsour.2014.06.022
  7. S. Hus, C. Li. H. Chien, R. Salunkhe, N. Suzuki, Y. Yamauchi, K. Ho and K. Wu, Sci. Rep., 4, 6983 (2014). https://doi.org/10.1038/srep06983
  8. M. Wang, A. Anghel, B. Marsan, N. C. Ha, N. Pootrakulchote, S. M. Zakeeruddin and M. Gratzel, J. Am. Chem. Soc., 131, 15976 (2009). https://doi.org/10.1021/ja905970y
  9. I. Chiu, C. Li, C. Lee, P. Chen, Y. Tseng, R. Vittal and K. Ho, Nano Energy, 22, 549 (2016).
  10. K. Kim, Y. Noh, M. Choi and O. Song, Korean J. Met. Mater., 54, 615 (2016). https://doi.org/10.3365/KJMM.2016.54.8.615
  11. Y. Noh, K. Kim and O. Song, Korean J. Met. Mater., in press (2016).
  12. C. Pirri, J. C. Peruchetti and G. Gewinner, Phys. Rev. B, 29, 3391 (1984). https://doi.org/10.1103/PhysRevB.29.3391
  13. J. E. Heng, Ph. D. Thesis (in Korean), p. 23-4, Korea Advanced Institute of Science and Technology, Daejeon (2004).
  14. H. Shin, Ph. D. Thesis (in Korean), p. 27-54, Chosun University, Gwangju (2011).
  15. L. V. Mccarty, L. C. Landauer and J. M. Binkoer, J. Chem. Eng. Data, 5, 365 (1960). https://doi.org/10.1021/je60007a035
  16. J. Greeley, J. K. Norskov and M. Mavrikakis, Annu. Rev. Phys. Chem., 53, 319 (2002). https://doi.org/10.1146/annurev.physchem.53.100301.131630