References
- Brownlee M. 2005. The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54: 1615-1625. https://doi.org/10.2337/diabetes.54.6.1615
- Ahmed N. 2005. Advanced glycation endproducts-role in pathology of diabetic complications. Diabetes Res Clin Pract 67: 3-21. https://doi.org/10.1016/j.diabres.2004.09.004
- Huebschmann AG, Regensteiner JG, Vlassara H, Reusch JEB. 2006. Diabetes and advanced glycoxidation end products. Diabetes Care 29: 1420-1432. https://doi.org/10.2337/dc05-2096
- Vlassara H. 1996. Advanced glycation endproducts and atherosclerosis. Annal Med 28: 419-426. https://doi.org/10.3109/07853899608999102
- Matsuda H, Wang T, Managi H, Yoshikawa M. 2003. Structural requirements of flavonoids for inhibition of protein glycation and radical scavenging activities. Bioorg Med Chem 11: 5317-5323. https://doi.org/10.1016/j.bmc.2003.09.045
- Edelstein D, Brownlee M. 1992. Mechanistic studies of advanced glycosylation end product inhibition by aminoguanidine. Diabetes 41: 26-29.
- Ceriello A. 2003. New insights on oxidative stress and diabetic complications may lead to a “casual” antioxidant therapy. Diabetes Care 26: 1589-1596. https://doi.org/10.2337/diacare.26.5.1589
- Stitt A, Gardiner TA, Alderson NL, Canning P, Frizzell N, Duffy N, Boyle C, Januszewski AS, Chachich M, Baynes JW, Thorpe SR. 2002. The AGE inhibitor pyridoxamine inhibits development of retinopathy in experimental diabetes. Diabetes 51: 2826-2832. https://doi.org/10.2337/diabetes.51.9.2826
- Doggrell SA. 2001. ALT-711 decreases cardiovascular stiffness and has potential in diabetes, hypertension and heart failure. Expert Opin Investig Drugs 10: 981-983. https://doi.org/10.1517/13543784.10.5.981
- Rahbar S, Figarola JL. 2003. Novel inhibitors of advanced glycation endproducts. Arch Biochem Biophys 419: 63-79. https://doi.org/10.1016/j.abb.2003.08.009
- Yokozawa T, Nakagawa T, Terasawa K. 2001. Effects of oriental medicines on the production of advanced glycation endproducts. J Tradit Med 18: 107-112.
-
Jang DS, Lee GY, Lee YM, Kim YS, Sun H, Kim DH, Kim JS. 2009. Flavan-3-ols having a
$\gamma$ -lactam from the roots of Actinidia arguta inhibit the formation of advanced glycation end products in vitro. Chem Pharm Bull 57: 397-400. https://doi.org/10.1248/cpb.57.397 - Ito H, Li P, Koreishi M, Nagatomo A, Nishida N, Yoshida T. 2014. Ellagitannin oligomers and a neolignan from pomegranate arils and their inhibitory effects on the formation of advanced glycation end products. Food Chem 152: 323-330. https://doi.org/10.1016/j.foodchem.2013.11.160
- Islam MN, Ishita IJ, Jung HA, Choi JS. 2014. Vicenin 2 isolated from Artemisia capillaris exhibited potent anti-glycation properties. Food Chem Toxicol 69: 55-62. https://doi.org/10.1016/j.fct.2014.03.042
- Bae K. 2000. The medicinal plants of Korea. Kyo-Hak Publishing Co., Seoul, Korea. p 236.
- Bhatt LR, Bae MS, Kim BM, Oh GS, Cha KY. 2009. A chalcone glycoside from the fruits of Sorbus commixta Hedl. Molecules 14: 5323-5327. https://doi.org/10.3390/molecules14125323
- Na MK, An RB, Min BS, Lee SM, Kim YH, Bae KH. 2002. Chemical constituents from Sorbus commixta. Nat Prod Sci 8: 62-65.
- Na MK, An RB, Lee SM, Min BS, Kim YH, Bae KH, Kang SS. 2002. Antioxidant compounds from the stem bark of Sorbus commixta. Nat Prod Sci 8: 26-29.
- Vinson JA, Howard III TB. 1996. Inhibition of protein glycation and advanced glycation end products by ascorbic acid and other vitamins and nutrients. J Nutr Biochem 7: 659-663. https://doi.org/10.1016/S0955-2863(96)00128-3
- Kooy NW, Royall JA, Ischiropoulos H, Beckman JS. 1994. Peroxynitrite-mediated oxidation of dihydrorhodamine 123. Free Radic Biol Med 16: 149-156. https://doi.org/10.1016/0891-5849(94)90138-4
- Sato T, Iwaki M, Shimogaito N, Wu X, Yamagishi S, Takeuchi M. 2006. TAGE (toxic AGEs) theory in diabetic complications. Curr Mol Med 6: 351-358. https://doi.org/10.2174/156652406776894536
- Nakatani N, Kayano S, Kikuzaki H, Sumino K, Katagiri K, Mitani T. 2000. Identification, quantitative determination, and antioxidative activities of chlorogenic acid isomers in prune (Prunus domestica L.). J Agric Food Chem 48: 5512-5516. https://doi.org/10.1021/jf000422s
- Merfort I. 1992. Caffeoylquinic acids from flowers of Arnica montana and Arnica chamissonis. Phytochemistry 31: 2111-2113. https://doi.org/10.1016/0031-9422(92)80373-M
- Yamabe N, Kang KS, Park CH, Tanaka T, Yokozawa T. 2009. 7-O-Galloyl-D-sedoheptulose is a novel therapeutic agent against oxidative stress and advanced glycation endproducts in the diabetic kidney. Biol Pharm Bull 32: 657-664. https://doi.org/10.1248/bpb.32.657
- Lee YS, Kang YH, Jung JY, Lee S, Ohuchi K, Shin KH, Kang IJ, Park JHY, Shin HK, Lim SS. 2008. Protein glycation inhibitors from the fruiting body of Phellinus linteus. Biol Pharm Bull 31: 1968-1972. https://doi.org/10.1248/bpb.31.1968
- Halliwell B. 1991. Drug antioxidant effects. A basis for drug selection?. Drugs 42: 569-605. https://doi.org/10.2165/00003495-199142040-00003
- Thuraisingham RC, Nott CA, Dodd SM, Yaqoob MM. 2000. Increased nitrotyrosine staining in kidneys from patients with diabetic nephropathy. Kidney Int 57: 1968-1972. https://doi.org/10.1046/j.1523-1755.2000.00046.x
- Rice-Evans CA, Miller NJ, Paganga G. 1996. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20: 933-956. https://doi.org/10.1016/0891-5849(95)02227-9
- Choi HR, Choi JS, Han YN, Bae SJ, Chung HY. 2002. Peroxynitrite scavenging activity of herb extracts. Phytother Res 16: 364-367. https://doi.org/10.1002/ptr.904
Cited by
- The Sorbus spp.—Underutilised Plants for Foods and Nutraceuticals: Review on Polyphenolic Phytochemicals and Antioxidant Potential vol.9, pp.9, 2020, https://doi.org/10.3390/antiox9090813