DOI QR코드

DOI QR Code

Chlorogenic Acid Isomers from Sorbus commixta of Ulleung Island Origin and Their Inhibitory Effects against Advanced Glycation End Product (AGE) Formation and Radical Scavenging Activity

울릉 마가목의 클로로겐산 이성체의 최종당화산물의 생성 저해 및 라디칼 소거 활성

  • Kim, Tae Hoon (Department of Food Science and Biotechnology, Daegu University)
  • 김태훈 (대구대학교 식품공학과)
  • Received : 2016.04.08
  • Accepted : 2016.05.16
  • Published : 2016.08.31

Abstract

Advanced glycation end product (AGE) formation and reactive oxygen species are potential therapeutic targets for the prevention of diabetic nephropathy and other pathogenic complications. Activity-guided isolation of an ethylacetate-soluble portion of 80% methanolic extract from fruits of Sorbus commixta of the Ulleung Island origin using AGE formation inhibition assay led to the isolation and identification of three caffeoylquinic acid derivatives of a previously known structure, 3-O-caffeoylquinic acid (neochlorogenic acid; 1), 4-O-caffeoylquinic acid (cryptochlorogenic acid; 2), and 5-O-caffeoylquinic acid (chlorogenic acid; 3). The structures of these compounds were confirmed by interpretation of nuclear magnetic resonance and mass spectrometry data. Among the isolates, the major metabolite, neochlorogenic acid (1) showed the most potent inhibitory effect against AGE formation with an $IC_{50}$ value of $167.5{\pm}3.5{\mu}M$. Furthermore, all isolated chlorogenic acid isomers were evaluated for their radical scavenging activity against peroxynitrite, and structurally related isomers 1, 2, and 3 exhibited potent inhibitory effects in this radical scavenging assay. This result suggests that the monocaffeoyl quinic acid derivatives isolated from S. commixta might be beneficial for the regulation of diabetic complications and related diseases.

천연물로부터 당뇨합병증에 효과적인 소재를 개발하기 위하여 본 연구를 수행하였으며, 울릉도산 마가목 열매의 80% methyl alcohol 추출물의 ethyl acetate 가용부로부터 최종 당화산물 생성 억제능($IC_{50}$; $181.2{\pm}2.8{\mu}g/mL$)을 확인하였다. 효능성분의 동정을 위하여 $C_{18}$ 겔 등을 활용한 column chromatography를 수행하여 3종의 페놀성 화합물을 분리하였고, 각 화합물의 화학구조는 NMR 스펙트럼 데이터 해석 및 표품과의 HPLC 직접 비교를 통하여 neochlorogenic acid(1), cryptochlorogenic acid(2) 및 chlorogenic acid (3)로 동정하였다. 이들 화합물에 대해 최종당화산물 생성억제능을 평가한 결과 neochlorogenic acid(1)가 가장 강한 $167.5{\pm}3.5{\mu}M$$IC_{50}$ 값을 나타내었고, cryptochlorogenic acid(2)는 $185.9{\pm}3.7{\mu}M$$IC_{50}$ 값을 나타내었다. 또한, 이들 물질에 대해 $ONOO^-$ 소거 활성을 평가한 결과 cryptochlorogenic acid(2)가 가장 강한 라디칼 소거 활성인 $4.0{\pm}0.2{\mu}M$$IC_{50}$ 값을 나타내었고, 구조이성질체인 neochlorogenic acid(1)가 $4.5{\pm}0.3{\mu}M$$IC_{50}$ 값을 나타내었으며, 이들 활성은 caffeic acid가 결합 양상에 따른 화합물의 구조에 따라 다름이 시사되었다. 향후 이들 활성 물질의 활성 기작에 대한 연구가 필요하며 본 연구 결과는 더욱 우수한 최종당화산물 생성 억제능을 가지는 새로운 선도화합물 발굴을 위한 기초자료로 이용될 수 있을 뿐만 아니라 당뇨합병증 예방 및 치료에 효과적인 천연물질의 상업화를 위한 기초자료로 이용될 수 있을 것으로 생각한다.

Keywords

References

  1. Brownlee M. 2005. The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54: 1615-1625. https://doi.org/10.2337/diabetes.54.6.1615
  2. Ahmed N. 2005. Advanced glycation endproducts-role in pathology of diabetic complications. Diabetes Res Clin Pract 67: 3-21. https://doi.org/10.1016/j.diabres.2004.09.004
  3. Huebschmann AG, Regensteiner JG, Vlassara H, Reusch JEB. 2006. Diabetes and advanced glycoxidation end products. Diabetes Care 29: 1420-1432. https://doi.org/10.2337/dc05-2096
  4. Vlassara H. 1996. Advanced glycation endproducts and atherosclerosis. Annal Med 28: 419-426. https://doi.org/10.3109/07853899608999102
  5. Matsuda H, Wang T, Managi H, Yoshikawa M. 2003. Structural requirements of flavonoids for inhibition of protein glycation and radical scavenging activities. Bioorg Med Chem 11: 5317-5323. https://doi.org/10.1016/j.bmc.2003.09.045
  6. Edelstein D, Brownlee M. 1992. Mechanistic studies of advanced glycosylation end product inhibition by aminoguanidine. Diabetes 41: 26-29.
  7. Ceriello A. 2003. New insights on oxidative stress and diabetic complications may lead to a “casual” antioxidant therapy. Diabetes Care 26: 1589-1596. https://doi.org/10.2337/diacare.26.5.1589
  8. Stitt A, Gardiner TA, Alderson NL, Canning P, Frizzell N, Duffy N, Boyle C, Januszewski AS, Chachich M, Baynes JW, Thorpe SR. 2002. The AGE inhibitor pyridoxamine inhibits development of retinopathy in experimental diabetes. Diabetes 51: 2826-2832. https://doi.org/10.2337/diabetes.51.9.2826
  9. Doggrell SA. 2001. ALT-711 decreases cardiovascular stiffness and has potential in diabetes, hypertension and heart failure. Expert Opin Investig Drugs 10: 981-983. https://doi.org/10.1517/13543784.10.5.981
  10. Rahbar S, Figarola JL. 2003. Novel inhibitors of advanced glycation endproducts. Arch Biochem Biophys 419: 63-79. https://doi.org/10.1016/j.abb.2003.08.009
  11. Yokozawa T, Nakagawa T, Terasawa K. 2001. Effects of oriental medicines on the production of advanced glycation endproducts. J Tradit Med 18: 107-112.
  12. Jang DS, Lee GY, Lee YM, Kim YS, Sun H, Kim DH, Kim JS. 2009. Flavan-3-ols having a $\gamma$-lactam from the roots of Actinidia arguta inhibit the formation of advanced glycation end products in vitro. Chem Pharm Bull 57: 397-400. https://doi.org/10.1248/cpb.57.397
  13. Ito H, Li P, Koreishi M, Nagatomo A, Nishida N, Yoshida T. 2014. Ellagitannin oligomers and a neolignan from pomegranate arils and their inhibitory effects on the formation of advanced glycation end products. Food Chem 152: 323-330. https://doi.org/10.1016/j.foodchem.2013.11.160
  14. Islam MN, Ishita IJ, Jung HA, Choi JS. 2014. Vicenin 2 isolated from Artemisia capillaris exhibited potent anti-glycation properties. Food Chem Toxicol 69: 55-62. https://doi.org/10.1016/j.fct.2014.03.042
  15. Bae K. 2000. The medicinal plants of Korea. Kyo-Hak Publishing Co., Seoul, Korea. p 236.
  16. Bhatt LR, Bae MS, Kim BM, Oh GS, Cha KY. 2009. A chalcone glycoside from the fruits of Sorbus commixta Hedl. Molecules 14: 5323-5327. https://doi.org/10.3390/molecules14125323
  17. Na MK, An RB, Min BS, Lee SM, Kim YH, Bae KH. 2002. Chemical constituents from Sorbus commixta. Nat Prod Sci 8: 62-65.
  18. Na MK, An RB, Lee SM, Min BS, Kim YH, Bae KH, Kang SS. 2002. Antioxidant compounds from the stem bark of Sorbus commixta. Nat Prod Sci 8: 26-29.
  19. Vinson JA, Howard III TB. 1996. Inhibition of protein glycation and advanced glycation end products by ascorbic acid and other vitamins and nutrients. J Nutr Biochem 7: 659-663. https://doi.org/10.1016/S0955-2863(96)00128-3
  20. Kooy NW, Royall JA, Ischiropoulos H, Beckman JS. 1994. Peroxynitrite-mediated oxidation of dihydrorhodamine 123. Free Radic Biol Med 16: 149-156. https://doi.org/10.1016/0891-5849(94)90138-4
  21. Sato T, Iwaki M, Shimogaito N, Wu X, Yamagishi S, Takeuchi M. 2006. TAGE (toxic AGEs) theory in diabetic complications. Curr Mol Med 6: 351-358. https://doi.org/10.2174/156652406776894536
  22. Nakatani N, Kayano S, Kikuzaki H, Sumino K, Katagiri K, Mitani T. 2000. Identification, quantitative determination, and antioxidative activities of chlorogenic acid isomers in prune (Prunus domestica L.). J Agric Food Chem 48: 5512-5516. https://doi.org/10.1021/jf000422s
  23. Merfort I. 1992. Caffeoylquinic acids from flowers of Arnica montana and Arnica chamissonis. Phytochemistry 31: 2111-2113. https://doi.org/10.1016/0031-9422(92)80373-M
  24. Yamabe N, Kang KS, Park CH, Tanaka T, Yokozawa T. 2009. 7-O-Galloyl-D-sedoheptulose is a novel therapeutic agent against oxidative stress and advanced glycation endproducts in the diabetic kidney. Biol Pharm Bull 32: 657-664. https://doi.org/10.1248/bpb.32.657
  25. Lee YS, Kang YH, Jung JY, Lee S, Ohuchi K, Shin KH, Kang IJ, Park JHY, Shin HK, Lim SS. 2008. Protein glycation inhibitors from the fruiting body of Phellinus linteus. Biol Pharm Bull 31: 1968-1972. https://doi.org/10.1248/bpb.31.1968
  26. Halliwell B. 1991. Drug antioxidant effects. A basis for drug selection?. Drugs 42: 569-605. https://doi.org/10.2165/00003495-199142040-00003
  27. Thuraisingham RC, Nott CA, Dodd SM, Yaqoob MM. 2000. Increased nitrotyrosine staining in kidneys from patients with diabetic nephropathy. Kidney Int 57: 1968-1972. https://doi.org/10.1046/j.1523-1755.2000.00046.x
  28. Rice-Evans CA, Miller NJ, Paganga G. 1996. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20: 933-956. https://doi.org/10.1016/0891-5849(95)02227-9
  29. Choi HR, Choi JS, Han YN, Bae SJ, Chung HY. 2002. Peroxynitrite scavenging activity of herb extracts. Phytother Res 16: 364-367. https://doi.org/10.1002/ptr.904

Cited by

  1. The Sorbus spp.—Underutilised Plants for Foods and Nutraceuticals: Review on Polyphenolic Phytochemicals and Antioxidant Potential vol.9, pp.9, 2020, https://doi.org/10.3390/antiox9090813