DOI QR코드

DOI QR Code

Design of Paper-Based Reconfigurable Frequency Selective Surface for Spectrum Control of Indoor Environments

실내 공간 스펙트럼 제어를 위한 종이기반 재구성 주파수 선택구조 설계

  • Cho, Sung-Sil (Kongju National University Department of Information and Communication Engineering) ;
  • Hong, Ic-Pyo (Kongju National University Department of Information and Communication Engineering)
  • Received : 2016.04.26
  • Accepted : 2016.06.20
  • Published : 2016.07.31

Abstract

In this paper, we presented the paper-based reconfigurable frequency selective surface(FSS) for transmitting or blocking the wireless LAN signal in indoor environments. The proposed reconfigurable FSS are designed on coated paper using a printing of conductive ink and conductive adhesive for PIN diode, which provides ON/OFF of the reconfigurable FSS for passing or blocking the 5GHz signal. The reconfigurable FSS attached on the wall can pass or block the incident wireless signal as the received signal strength in indoor. To provide the validity of the proposed FSS, we fabricated the reconfigurable FSS on the paper and confirmed the very similar results between simulations and measurements. From the measured results of the proposed spectrum control system, we know that the proposed reconfigurable FSS can block about 20dB at 5.745GHz~5.805GHz.

본 논문에서는 실내 전파 환경에서 5GHz 대역 무선LAN 신호를 투과 또는 차단하기 위한 종이기반 재구성 FSS를 설계하였다. 5GHz 대역에서 핀 다이오드의 ON/OFF 상태에 따라 통과 또는 차단이 가능한 재구성 FSS를 잉크젯 프린팅기법과 전도성 접착제를 이용하여 종이 위에 설계하였으며, 실내 환경을 가정한 공간 벽면에 적용하여 외부로부터 입사된 무선LAN 신호를 측정하여 신호의 세기에 따라 투과 또는 차단할 수 있는 제어 시스템을 설계하였다. 설계한 재구성 FSS 구조는 입사각과 편파에 대해 안정된 특성을 가지며, 설계결과를 검증하기 위하여 잉크젯 프린팅 방식으로 재구성 FSS를 제작하였다. 제작된 FSS 구조의 재구성동작을 측정을 통해 확인하고, 실내공간에 부착하여 실내공간에 유입되는 5GHz 대역 무선LAN 신호세기에 따라 FSS 구조가 재구성동작이 되는 시스템을 구현하고 측정을 통하여 확인하였다. 측정을 통하여 제작된 재구성 FSS 구조가 IEEE 802.11n의 5GHz 무선LAN 대역 중 5.745GHz~5.805GHz 대역의 신호를 약 20dB 차단하는 성능을 가짐을 확인하였다.

Keywords

References

  1. B. H. Koo, C. B. Chae, S. H. Park, H. S. Park, and J. H. Ham, "A novel frequency allocation algorithm for limited radio resource environments," J. KICS, vol. 40, no. 9, pp. 1719-1721, Sept. 2015. https://doi.org/10.7840/kics.2015.40.9.1719
  2. J. M. Won, S. J. Yoo, M. H. Seo, and H. W. Cho, "Dynamic spectrum sensing and channel access mechanism in frequency hopping based cognitive radio ad-hoc networks," J. KICS, vol. 40, no. 11, pp. 2305-2315, Nov. 2015. https://doi.org/10.7840/kics.2015.40.11.2305
  3. K. J. Choi, K. J. Kim, and K. S. Kim, "Joint spatial division and reuse for maximizing network throughput in densely-deployed massive MIMO WLANs," J. KICS, vol. 40, no. 3, pp. 469-477, Mar. 2015. https://doi.org/10.7840/kics.2015.40.3.469
  4. L. Subrt and P. Pechac, "Controlling coverage for indoor wireless networks using metalized active FSS walls," in 2013 Asia-Pacific Conf. on Comm., pp. 496-500, Bali, Indonesia, 2013.
  5. M. L. Wang, S. J. Zhang, J, Q. Liu, W. D. Wang, X. Ai, S. D. Liu, and W. Liang, "The research on the effects of an active FSS with circle element on the characteristics of radar absorbing materials," IET Int. Radar Conf. 2015, pp. 1-4, Hangzhou, China, Oct. 2015.
  6. B. M. Turki, E. A. Parker, M. A. Ziai, J. C. Batchelor, V. S. Romaguera, and S . G. Yeates, "Study of clusters of defects in low-cost digitally fabricated frequency selective surfaces," in 2014 European Conf. on Ant. and Propag., pp. 779-801, The Hague, Apr. 2014.
  7. S. S. Cho, J. W. Park, and I. P. Hong, "Design of wireless LAN controlled system using active frequency selective surface," J. KIIT, vol. 14, no. 3, pp. 19-24, Mar. 2016.
  8. L. B. Wang, K. Y. See, J. W. Zhang, B. Salam, and A. C. W. Lu, "Ultrathin and flexible screen-printed metasurfaces for EMI shielding applications," IEEE Trans. Electromagnetic Compat., vol. 53, no. 3, pp. 700-705, Aug. 2014. https://doi.org/10.1109/TEMC.2011.2159509
  9. N. Qasem and R. Seager, "Indoor band pass frequency selective wall paper equivalent circuit and ways to enhance wireless signal," 2011 Loughborough Ant. Propag. Conf., pp. 1-4, Loughborough, UK, Nov. 2011.
  10. J. A. Hagerty, N. D. Lopez, B. Popovic, and Z. Popovic, "Broadband rectenna arrays for randomly polarized incident waves," Microwave Conf., pp. 1-4, Paris, France, Oct. 2000.
  11. S. Keyrouz, G. Perotto, and H. J. Visser, "Frequency selective surface for radio frequency energy harvesting applications," IET Microwaves, Ant. Propag., vol. 8, no. 7, pp. 523-531, May 2014. https://doi.org/10.1049/iet-map.2013.0130
  12. E. A. Parker, S. Massey, M. Shelley, and R. Pearson, "Application of FSS structures to selectively control the propagation of signals into and out of buildings Annex 5: Survey of active FSS," ERA Technol., Tech, Rep. Ofcom AY4464A project, 2004.
  13. G. I. Kiani, K. L. Ford, L. G. Olsson, K. P. Esselle, and C. J. Panagamuwa, "Switchable frequency selective surface for reconfigurable electromagnetic architecture of buildings," IEEE Trans. Ant. Propag., vol. 58, no. 2, pp. 581-584, Feb. 2010. https://doi.org/10.1109/TAP.2009.2037772

Cited by

  1. Design of Security Paper with Selective Frequency Reflection Characteristics vol.18, pp.7, 2018, https://doi.org/10.3390/s18072263
  2. 은 나노 분말과 카본 잉크를 이용한 완전 인쇄형 NFC 태그 설계 vol.42, pp.4, 2017, https://doi.org/10.7840/kics.2017.42.4.716