DOI QR코드

DOI QR Code

Study on Prediction of Drying Shrinkage of Concrete using Shrinkage Reducing Agent

수축저감제를 사용한 콘크리트의 건조수축 예측에 관한 연구

  • Received : 2016.05.10
  • Accepted : 2016.06.17
  • Published : 2016.08.20

Abstract

Shrinkage Reducing Agent(SRA) was developed in order to control drying shrinkage cracks in concrete, and the use of SRA is increasing since it can control drying shrinkage cracks and improve the quality of concrete structures. Although there are many types of prediction equations of drying shrinkage strain, there is no prediction method which can consider the effect of SRA up to the present. Therefore, it is impossible to predict the tensile stress generated by drying shrinkage of SRA concrete, and to investigate the quantitative serviceability limit state of SRA concrete. In this study, the drying shrinkage of SRA concrete was investigated by experiment and analysis in order to suggest the predictability of drying shrinkage of SRA concrete. As a result, AIJ model, ACI model, GL2000 model showed there was a correlation between the predicted values and the experimental values within the error range of ${\pm}10%$. However, CEB-FIP model and B3 model underestimated the experimental values.

콘크리트 건조수축 균열을 제어하기 위하여 수축저감제(SRA)가 개발되었다. SRA는 콘크리트 미세공극의 표면장력을 작게 하여 수축량을 감소시키며, 콘크리트의 품질향상을 위하여 SRA의 사용이 증가되고 있다. 하지만 건조수축을 예측하기 위한 다양한 모델이 존재함에도 불구하고, SRA의 영향을 고려할 수 있는 예측방법이 아직까지 없는 실정이다. 따라서 SRA 콘크리트의 건조수축에 의해 발생하는 인장응력을 정확히 예측할 수 없고, 콘크리트 구조물의 정량적인 사용성 한계의 검토가 불가능하다. 본 연구에서는 SRA 콘크리트의 정량적인 건조수축 변형률 예측가능성을 제시하기 위하여, 건조수축실험값과 기존 모델에 의한 예측값을 비교하였다. 기존 모델에는 SRA의 영향을 고려할 수 없으므로, 실험결과에 근거하여 SRA 첨가율에 따른 수축저감계수를 도출하였고 기존 모델에 수축저감계수를 적용하여 예측값을 구하였다. 그 결과 AIJ 모델, ACI 모델, GL2000 모델은 ${\pm}10%$의 오차범위 내에서 예측값과 실측값이 전반적으로 양호한 상관관계를 보였지만, CEB-FIP 모델과 B3 모델은 예측값이 실측값을 과소평가 하는 것으로 나타났다.

Keywords

References

  1. Seo TS, Ohno Y, Choi CS. Cracking due to drying shrinkage in a RC wall: Part 1: estimation by bond analysis. Magazine of Concrete Research. 2009 Oct;61(8):609-19. https://doi.org/10.1680/macr.2008.61.8.609
  2. Seo TS, Ohno Y, Choi CS. Cracking due to drying shrinkage in a RC wall: Part 2: Proposal of estimation equation. Magazine of Concrete Research. 2009 Oct;61(8):621-31. https://doi.org/10.1680/macr.2008.61.8.621
  3. Tao J, Caiyi C, Yizhou Z, Xujian L. Effect of degree of ceramsite prewetting on the cracking behavior of LWAC. Magazine of Concrete Research. 2012 Aug;64(8):687-95. https://doi.org/10.1680/macr.11.00128
  4. Seo TS, Lee MS. Experimental study on tensile creep of coarse recycled aggregate concrete. International Journal of Concrete Structures and Materials. 2015 Sep;9(3):337-43. https://doi.org/10.1007/s40069-015-0105-8
  5. Bentz DP, Geiker MR, Hansen KK. Shrinkage-reducing admixtures and early-age desiccation in cement pastes and mortars. Cement and Concrete Research. 2001 Jul;31(7):1075-85. https://doi.org/10.1016/S0008-8846(01)00519-1
  6. Farshad R, Gaurav S, Jason W. Interactions between shrinkage reducing admixtures (SRA) and cement paste's pore solution. Cement and Concrete Research. 2008 May;38(5):606-15. https://doi.org/10.1016/j.cemconres.2007.12.005
  7. Shah SP, Karaguler ME, Sarigaphuti M. Effect of shrinkage reducing admixtures on restrained shrinkage cracking of concrete. ACI Materials Journal, 1992 May;89(3):289-95.
  8. Erhan G, Mehmet G, Alaa M, Radhwan A, Zeynep A, Kasim M. Enhancement of shrinkage behavior of lightweight aggregate concretes by shrinkage reducing admixture and fiber reinforcement. Construction and Building Materials. 2014 Mar;54(3):91-8. https://doi.org/10.1016/j.conbuildmat.2013.12.041
  9. Sato K. Shrinkage reducing agent. JCI Concrete Journal. 2011 May;49(5):61-4. https://doi.org/10.3151/coj.49.1_61
  10. ACI 209.2R-08. Guide for Modeling and Calculating Shrinkage and Creep in Hardened Concrete. Detroit: American Concrete Institute; 2008. 45 p.
  11. AIJ. Recommendations for practice of crack control in reinforced concrete structures (Design and Construction). Tokyo(Japan): Architectural Institute of Japan; 2006. Chapter 3, Performance Design, p. 53-7.
  12. Comite Euro-International Du Beton. CEB-FIP Model Code 90. London: Thomas Telford Services; 1990. 437 p.
  13. JIS A 1129. Method of test for length change of mortar and concrete. Japanese Standards Association. 2001. 5 p.
  14. JCI Committee. Autogenous Shrinkage Committee Report. Japan Concrete Institute. 1997. 10 p.
  15. Takeuchi M, Tanaka S, Sato R, Ohno Y. Evaluation of the Autogenous Shrinkage Stress of High Strength Concrete. Proceedings of Japan Concrete Institute; 1997 Jun 9; Tokyo, Japan. Tokyo (Japan) : Japan Concrete Institute; 1997. p. 751-6.
  16. JIS A 1108. Method of test for length compressive strength of concrete. Japanese Standards Association. 2006. 7 p.
  17. JIS A 1149. Method of test for static modulus of elasticity of concrete. Japanese Standards Association. 2010. 4 p.
  18. JIS A 1113. Method of test for splitting tensile strength of concrete. Japanese Standards Association. 1999. 4 p.
  19. Nmai C, Tomita R, Hondo F, Buffenbarger J. Shrinkage: reducing admixtures. Concrete International, 1998 Apr;20(4):31-7.
  20. Kanda K. Quantitative evaluation of shrinkage cracking initiation. Concrete Journal of the Japan Concrete Institute. 2005 May;43(5);60-6.