Acknowledgement
Supported by : Central Universities of China
References
- Ashby, M.F., Evans, A.G., Fleck, N.A., Gibson, L.J., Hutchinson, J.W. and Wadley, H.N.G. (2000), Metal Foams: A Design Guide Burlington, Butterworth-Heinemann, UK.
- Banhart, J. (2001), "Manufacture, characterisation and application of cellular metals andmetal foams", Prog. Mater. Sci., 46(6), 559-632. https://doi.org/10.1016/S0079-6425(00)00002-5
- Banhart, J. and Seeliger, H.W. (2008), "Aluminum foam sandwich panels: Manufacture, metallurgy and applications", Adv. Eng. Mater., 10(9), 793-802. https://doi.org/10.1002/adem.200800091
- Baumeister, J., Banhart, J. and Weber, M. (1997), "Aluminum foams for transport industry", Mater. Des., 18(4-6), 217-220. https://doi.org/10.1016/S0261-3069(97)00050-2
- Crupi, V., Epasto, G. and Guglielmino, E. (2013), "Comparison of aluminum sandwiches for lightweight shipstructures: Honeycomb vs. foam", Marine Struct., 30, 74-96. https://doi.org/10.1016/j.marstruc.2012.11.002
- D'Alessandro, V., Petrone, G., De Rosa, S. and Franco, F. (2014), "Modelling of aluminum foam sandwich panels", Smart Struct. Syst., Int. J., 13(4), 615-636. https://doi.org/10.12989/sss.2014.13.4.615
- Duarte, I., Vesenjak, M. and Krstulovic-Opara, L. (2014), "Variation of quasi-static and dynamic compressive properties in a single aluminum foam block", Mater. Sci. Eng. A, 616, 171-182. https://doi.org/10.1016/j.msea.2014.08.002
- Duarte, I., Vesenjak, M., Krstulovic-Opara, L., Anzel, I. and Ferreira, J.M.F. (2015), "Manufacturing and bending behavior of in situ foam-filled aluminum alloy tubes", Mater. Des., 66, 532-544. https://doi.org/10.1016/j.matdes.2014.04.082
- Duarte, I., Krstulovic-Opara, L. and Vesenjak, M. (2016), "Analysis of performance of in-situ carbon steel bar reinforced Al-alloy foams", Compos. Struct., 152, 432-443. https://doi.org/10.1016/j.compstruct.2016.05.061
- Gibson, L.J. (2000), "Mechanical behavior of metallic foams", Annual Review of Materials Science, 30(1), 191-227. https://doi.org/10.1146/annurev.matsci.30.1.191
- Gibson, L.J. and Ashby, M.F. (1997), Cellular Solids: Structure and Properties, Cambridge University Press, New York, NY, USA.
- Huang, L., Wang, H., Yang, D.H., Ye, F. and Lu, Z.P. (2012), "Effects of scandium additions on mechanical properties of cellular Al-based foams", Intermetallics, 28, 71-76. https://doi.org/10.1016/j.intermet.2012.03.050
- Kabir, K., Vodenitcharova, T. and Hoffman, M. (2014), "Response of aluminum foam-cored sandwich panels to bending load", Composites: Part B, 64, 24-32. https://doi.org/10.1016/j.compositesb.2014.04.003
- Liu, H., Cao, Z.K., Yao, G.C., Luo, H.J. and Zu, G.Y. (2013), "Performance of aluminum foam-steel panel sandwich composites subjectedto blast loading", Mater. Des., 47, 483-488. https://doi.org/10.1016/j.matdes.2012.12.003
- Lu, T.J. and Ong, J.M. (2001), "Characterization of close-celled cellular aluminum alloys", J. Mater. Sci., 36(11), 2773-2786. https://doi.org/10.1023/A:1017977216346
- McCormack, T.M., Miller, R., Kesler, O. and Gibson, L.J. (2001), "Failure of sandwich beams with metallic foam cores", Int. J. Sol. Struct., 38(28-29), 4901-4920. https://doi.org/10.1016/S0020-7683(00)00327-9
- Mohan, K., Hon, Y.T., Idapalapati, S. and Seowa, H.P. (2005), "Failure of sandwich beams consisting of alumina face sheet and aluminum foam core in bending", Mater. Sci. Eng. A, 409(1-2), 292-301. https://doi.org/10.1016/j.msea.2005.06.070
- Nammi, S.K., Myler, P. and Edwards, G. (2010), "Finite element analysis of closed-cell aluminum foam under quasi-static loading", Mater. Des., 31(2), 712-722. https://doi.org/10.1016/j.matdes.2009.08.010
- Ruan, D., Lu, G. and Wong, Y.C. (2010), "Quasi-static indentation tests on aluminum foam sandwich panels", Compos. Struct., 92(9), 2039-2046. https://doi.org/10.1016/j.compstruct.2009.11.014
- Styles, M., Compston, P. and Kalyanasundaram, S. (2008), "Finite element modeling of core thickness effects in aluminum foam/composite sandwich structure under flexural loading", Compos. Struct., 86(1-3), 227-232. https://doi.org/10.1016/j.compstruct.2008.03.024
- Thoma, K., Schafer, F., Hiermaier, S. and Schneider, E. (2004), "An approach to achieve progress in spacecraft shielding", Adv. Space Res., 34(5), 1063-1075. https://doi.org/10.1016/j.asr.2003.03.034
- Wang, N.Z., Chen, X., Li, A., Zhang, H.W. and Liu, Y. (2016), "Three-point bending performance of a new aluminum foam composite structure", Trans. Nonferrous Met. Soc. China, 26(2), 359-368. https://doi.org/10.1016/S1003-6326(16)64088-8
- Wei, L., Yao, G.C., Zhang, X.M. and Luo, H.J. (2003), "Preparation of Foam Aluminum by Powder Metallurgy Process", J. Northeastern Univ. (Natural Science), 24(11), 1071-1074.
- Zu, G., Song, B., Zhong, Z., Li, X., Mu, Y. and Yao, G. (2012), "Static three-point bending behavior of aluminum foam sandwich", J. Alloys Compounds, 540, 275-278. https://doi.org/10.1016/j.jallcom.2012.06.079
- Zu, G.Y., Lu, R.H., Li, X.B., Zhong, Z., Ma, X.J., Han, M.B. and Yao, G.C. (2013), "Three-point bending behavior of aluminum foam sandwich with steel panel", Trans. Nonferrous Met. Soc. China, 23(9), 2491-2495. https://doi.org/10.1016/S1003-6326(13)62759-4
Cited by
- Effects of epoxy resin liquidity on the mechanical properties of aluminum foam sandwich vol.32, pp.6, 2018, https://doi.org/10.1080/01694243.2017.1375173
- Flexural response of carbon fiber reinforced aluminum foam sandwich 2017, https://doi.org/10.1177/0021998317735166
- Analytical solutions for sandwich plates considering permeation effect by 3-D elasticity theory vol.25, pp.2, 2016, https://doi.org/10.12989/scs.2017.25.2.127
- Bending behavior of aluminum foam sandwich with 304 stainless steel face-sheet vol.25, pp.3, 2016, https://doi.org/10.12989/scs.2017.25.3.327
- Geometrically nonlinear analysis of sandwich beams under low velocity impact: analytical and experimental investigation vol.27, pp.3, 2016, https://doi.org/10.12989/scs.2018.27.3.273
- Effects of face-sheet materials on the flexural behavior of aluminum foam sandwich vol.29, pp.3, 2016, https://doi.org/10.12989/scs.2018.29.3.301
- Energy absorption of foam-filled lattice composite cylinders under lateral compressive loading vol.31, pp.2, 2016, https://doi.org/10.12989/scs.2019.31.2.133
- Viscoelastic behaviour investigation and new developed laboratory slamming test on foam core sandwich vol.22, pp.6, 2016, https://doi.org/10.1177/1099636218792729
- Effect of infill pattern, density and material type of 3D printed cubic structure under quasi-static loading vol.235, pp.19, 2016, https://doi.org/10.1177/0954406220971667