DOI QR코드

DOI QR Code

Adhesion Property of Low-Viscosity Polyurethane Hot-Melt Adhesive in according to the Deblocking Temperature and Content of Reactive Diluents

해리온도와 반응성 희석제 함량에 따른 저점도 폴리우레탄 핫멜트 접착제의 접착특성

  • Choi, Min Ji (Korea Institute of Footwear and Leather Technology (KIFLT)) ;
  • Jeong, Boo Young (Korea Institute of Footwear and Leather Technology (KIFLT)) ;
  • Cheon, Jung Mi (Korea Institute of Footwear and Leather Technology (KIFLT)) ;
  • Ha, Chang-Sik (Department of Polymer Engineering, Pusan National University) ;
  • Chun, Jae Hwan (Korea Institute of Footwear and Leather Technology (KIFLT))
  • 최민지 (한국신발피혁연구원 고분자표면연구실) ;
  • 정부영 (한국신발피혁연구원 고분자표면연구실) ;
  • 천정미 (한국신발피혁연구원 고분자표면연구실) ;
  • 하창식 (부산대학교 고분자공학과) ;
  • 천제환 (한국신발피혁연구원 고분자표면연구실)
  • Received : 2016.05.13
  • Accepted : 2016.05.27
  • Published : 2016.06.30

Abstract

In this study, low-viscosity polyurethane hot-melt were synthesized with polyether polyol / polyester polyol, 4,4-dicyclohexylmethane diisocyanate ($H_{12}MDI$), 2-butanone oxime (MEKO) to improve the properties and peel strength. The properties of the synthesized low-viscosity polyurethane hot-melt was evaluated through FT-IR, viscosity meter and UTM. When the content of the reactive diluent increases and the NCO-blocked prepolymer decreases, the viscosity of low-viscosity polyurethane hot-melt adhesive was increased. When the ratio of OH-terminated oligomer, NCO-blocked prepolymer and content of reactive diluent is 1 : 0.5 : 0.5, low-viscosity polyurethane hot-melt showed 1.1 kgf/cm peel strength.

본 연구에서는 반응성 희석제 함량에 따라 접착강도 및 물성을 향상시키기 위해 polyether polyol/polyester polyol, 4,4-dicyclohexylmethane diisocyanate ($H_{12}MDI$), 2-butanone oxime (MEKO)를 사용하여 저점도 폴리우레탄 핫멜트를 합성하였다. 합성된 저점도 폴리우레탄 핫멜트의 물성은 FT-IR, viscosity meter 및 UTM 등을 통해 확인하였다. 반응성 희석제의 함량이 증가하고 NCO-blocked prepolymer가 감소함에 따라 저점도 폴리우레탄 핫멜트 접착제의 점도는 증가하였으며, OH-terminated oligomer, NCO-blocked prepolymer, 반응성 희석제 함량의 비가 1 : 0.5 : 0.5일 때 1.1 kgf/cm 접착강도를 나타내었다.

Keywords

References

  1. K. H. Jin and U. R. Cho, Elastomers and Composites, 49, 31 (2014). https://doi.org/10.7473/EC.2014.49.1.31
  2. H. J. Kim, Rubber Technology, 4, 77 (2003).
  3. Mark F. Sonnenschein, Polyurethanes (Science, Technology, Markets, and Trends), 1, 10, JohnWile& Sonslnc (2014).
  4. S. M. Kim, N. S. Kwak, Y. K. Yang, B. K. Yim, B. Y. Park, and T. S. Hwang, Polymer (Korea), 29, 253 (2005).
  5. C. Y. Park, Elastomers and Composites, 49, 245 (2014). https://doi.org/10.7473/EC.2014.49.3.245
  6. K. J. Ryu and C. Y. Park, Journal of Environmental Science International, 23, 1909 (2011).
  7. Y. S. Chun, Y. K. Hong, and K. H. Chung, J. of Korean Ind. Eng. Chemistry, 7, 194 (1996).
  8. J. S. Youm and H. J. Kang, Polymer (Korea), 36, 119 (2011).
  9. Y. W. Chang, J. B. Kim, K. H. Chung, Y. S. Chun, and J. S. Jung, Elastomer, 33, 267 (1998).
  10. S. J. Kim and B. K. Kim, J. of Korean Ind. & Eng. Chemistry, 3, 614 (1992).
  11. J. Y. Park, B. Y. Jeong, J. M. Cheon, C. S. Ha, and J. H. Chun, Journal of Adhesion and Interface, 16, 22 (2015). https://doi.org/10.17702/jai.2015.16.1.22
  12. I. S. Cho, S. G. Kang, and S. B. Kim, Journal of the Korean Institute of Gas, 12, 38 (2008).
  13. Y. K. Yang, N. S. Kwak, and T. S. Hwang, Polymer (Korea), 29, 81 (2005).
  14. K. H. Jin, M. S. Kim, and U. R. Cho, Elastomers and Composites, 48, 190 (2013). https://doi.org/10.7473/EC.2013.48.3.190

Cited by

  1. LMPET/PET 시스-코어 부직포의 온도에 따른 접착특성 및 물성 변화에 관한 연구 vol.55, pp.2, 2016, https://doi.org/10.12772/tse.2018.55.112
  2. PP 및 PE/PP 시스-코어 부직포의 열융착 거동의 차이에 기인한 접착 특성 및 통기성에 관한 연구 vol.55, pp.6, 2018, https://doi.org/10.12772/tse.2018.55.425