DOI QR코드

DOI QR Code

유성볼밀링 및 스파크 플라즈마 소결법으로 제조한 Mo-5~20 wt%. Cu 합금의 열적 특성

Thermal Property of Mo-5~20 wt%. Cu Alloys Synthesized by Planetary Ball Milling and Spark Plasma Sintering Method

  • 이한찬 (인하대학교 전기공학과) ;
  • 문경일 (한국생산기술연구원 열처리그룹) ;
  • 신백균 (인하대학교 전기공학과)
  • Lee, Han-Chan (Department of Electrical Engineering, Inha University) ;
  • Moon, Kyoung-Il (Korea Institute of Industrial Technology, Heat Treatment R&BD Group) ;
  • Shin, Paik-Kyun (Department of Electrical Engineering, Inha University)
  • 투고 : 2016.06.12
  • 심사 : 2016.07.24
  • 발행 : 2016.08.01

초록

Mo-Cu alloys have been widely used for heat sink materials, vacuum technology, automobile, and many other applications due to their excellent physical and electric properties. Especially, Mo-Cu composites with 5 ~ 20 wt.% copper are widely used for the heavy duty service contacts due to their excellent properties like low coefficient of thermal expansion, wear resistance, high temperature strength, and prominent electrical and thermal conductivity. In most of the applications, highly-dense Mo-Cu materials with homogeneous microstructure are required for better performance. In this study, Mo-Cu alloys were prepared by PBM (planetary ball milling) and SPS (spark plasma sintering). The effect of Cu with contents of 5~20 wt.% on the microstructure and thermal properties of Mo-Cu alloys was investigated.

키워드

참고문헌

  1. X. L. Zhou, Y. H. Dong, X. Z. Hua, R. U. Din, and Z. G. Ye, Mater. Des., 31, 1603 (2010). [DOI: http://dx.doi.org/10.1016/j.matdes.2009.09.014]
  2. Y. Yang, G. Lin, X. Wang, D. Chen, A. Sun, and D. Wang, Int. J. Refract. Met. Hard. Mater., 43, 121 (2014). [DOI: http://dx.doi.org/10.1016/j.ijrmhm.2013.11.003]
  3. A. Kumar, K. Jayasankar, M. Debata, and A. Mandal, J. Alloy. Compd., 647, 1040 (2015). [DOI: http://dx.doi.org/10.1016/j.jallcom.2015.06.129]
  4. D. Wang, X. Dong, P. Zhou, A. Sun, and B. Duan, Mater. Lett., 61, 929 (2007). [DOI: http://dx.doi.org/10.1016/j.matlet.2006.11.070]
  5. A. Sun, D. Wang, Z. Wu, and Q. Cheng, J. Alloy. Compd., 509, L74 (2011). [DOI: http://dx.doi.org/10.1016/j.jallcom.2010.11.019]
  6. J. H. Shin, Q. M. Wang, and K. H. Kim, Mater. Chem. Phys., 130, 870 (2011). [DOI: http://dx.doi.org/10.1016/j.matchemphys.2011.08.002]
  7. H. S. Nalwa, Handbook of Nanostructured Materials and Nanotechnology, 269 (2000).
  8. P. Song, J. G. Cheng, L. Wan, J. S. Zhao, Y. F. Wang, and Y. B. Cai, J. Alloy. Compd., 476, 226 (2009). [DOI: http://dx.doi.org/10.1016/j.jallcom.2008.09.097]
  9. J. L. Fan, C. Yubo, L. Tao, and T. Jiamin, Rare Metal Mat. Eng., 38, 1693 (2009). https://doi.org/10.1016/S1875-5372(10)60051-3
  10. Y. Wang, Z. Y. Pan, Z. Wang, X. G. Sun, and L. Wang, Wear, 271, 2953 (2011). [DOI: http://dx.doi.org/10.1016/j.wear.2011.06.015]
  11. C. Aguilar, S. Ordonez, J. Marin, F. Castro, V. Martinez, Mat. Sci. Eng. A, 464, 288 (2007). [DOI: http://dx.doi.org/10.1016/j.msea.2007.02.017]
  12. A. K. Sun, D. Z. Wang, Z. Z. Wu, and X. Q. Zan, J. Alloy. Compd., 505, 588 (2010). [DOI: http://dx.doi.org/10.1016/j.jallcom.2010.06.080]
  13. S. O. Chwa, D. D. Klein, H. L. Liao, L. C. Dembinski, and C. Christian, Surf. Coat. Technol., 200, 5682 (2006). [DOI: http://dx.doi.org/10.1016/j.surfcoat.2005.08.114]
  14. C. Suryanarayana, Prog. in Materials Science, 41, 1 (2001). [DOI: http://dx.doi.org/10.1016/S0079-6425(99)00010-9]
  15. C. C. Koch and J. D. Whittenberger, Intemrrtdlics, 4, 339 (1996).
  16. M. Abdellaoui and E. Gaffet, Acta Metal Mater., 43, 1087 (1995). [DOI: http://dx.doi.org/10.1016/0956-7151(95)92625-7]
  17. J. Kano and F. Saito, Powder Technol., 98, 166 (1998). [DOI: http://dx.doi.org/10.1016/S0032-5910(98)00039-4]
  18. Z. A. Munir and U. Anselmi-Tamburini, J. Mater. Sci., 41, 763 (2006). [DOI: http://dx.doi.org/10.1007/s10853-006-6555-2]
  19. O. Mamoru, Mater. Sci. Eng. A, 297, 183 (2000).
  20. M. R. Akbarpour, H. S. Kim, Mater Des., 83, 644 (2015). [DOI: http://dx.doi.org/10.1016/j.matdes.2015.06.064]