이차원 물질 기반 광전자 소자 기술동향

  • Published : 2016.06.30

Abstract

Keywords

References

  1. F. Xia, H. Wang, D. Xiao, M. Dubey and A. Ramasubramaniam, Nature Photon. 8, 899 (2014). https://doi.org/10.1038/nphoton.2014.271
  2. K. F. Mak and J. Shan, Nature Photon. 10, 216 (2016). https://doi.org/10.1038/nphoton.2015.282
  3. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman and M. S. Strano, Nature Nanotech. 7, 699 (2012). https://doi.org/10.1038/nnano.2012.193
  4. M. M. Ugeda, A. J. Bradley, S. F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S. K. Mo, Z. Hussain, Z. X. Shen, F. Wang, S. G. Louie and F. Crommie, Nature Mater. 13, 1091 (2014). https://doi.org/10.1038/nmat4061
  5. B. Zhu, X. Chen and X. Cui, Sci. Rep. 5, 9218 (2015). https://doi.org/10.1038/srep09218
  6. K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao and J. Shan, Phys. Rev. Lett. 113, 026803 (2014). https://doi.org/10.1103/PhysRevLett.113.026803
  7. C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard and J. Hone, Nature Nanotech. 5, 722 (2010). https://doi.org/10.1038/nnano.2010.172
  8. A. Castellanos-Gomez, L. Vicarelli, E. Prada, J. O. Island, K. L. Narasimha-Acharya, S. I. Blanter, D. J. Groenendijk, M. Buscema, G. A. Steele, J. V. Alvarez, H. W. Zandbergen, J. J. Palacios and H. S. J. van der Zant, 2D Mater. 1, 025001 (2014). https://doi.org/10.1088/2053-1583/1/2/025001
  9. L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen and Y. Zhang, Nature Nanotech. 9, 372 (2014). https://doi.org/10.1038/nnano.2014.35
  10. A. K. Geim and I. V. Grigorieva, Nature 499, 419 (2013). https://doi.org/10.1038/nature12385
  11. A. A. Balandin, Nature Mater. 10, 569 (2011). https://doi.org/10.1038/nmat3064
  12. H. Jang, J. D. Wood, C. R. Ryder, M. C. Hersam and D. G. Cahill, Adv. Mater. 27, 8017 (2015). https://doi.org/10.1002/adma.201503466
  13. T. Ouyang, Y. Chen, Y. Xie, K. Yang, Z. Bao and J. Zhong, Nanotechnology 21, 245701 (2010). https://doi.org/10.1088/0957-4484/21/24/245701
  14. J. S. Ross, P. Klement, A. M. Jones, N. J. Chimire, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden and X. Xu, Nature Nanotech. 9, 268 (2014). https://doi.org/10.1038/nnano.2014.26
  15. A. Pospischil, M. M. Furchi and T. Mueller, Nature Nanotech. 9, 257 (2014). https://doi.org/10.1038/nnano.2014.14
  16. B. W. H. Baugher, H. O. H. Churchill, Y. Yang and P. Jarillo-Herrero, Nature Nanotech. 9, 262 (2014). https://doi.org/10.1038/nnano.2014.25
  17. R. Cheng, D. Li, H. Zhou, C. Wang, A. Yin, S. Jiang, Y. Liu, Y. Chen, Y. Huang and X. Duan, Nano Lett. 14, 5590 (2014). https://doi.org/10.1021/nl502075n
  18. F. Withers, O. Del Poze-Zamudio, A. Mishchenko, A. P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S. J. Haigh, A. K. Geim, A. I. Tartakovskii and K. S. Novoselov, Nature Mater. 14, 301 (2015). https://doi.org/10.1038/nmat4205
  19. Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang and X. Zhang, Nature Photon. 9, 733 (2015). https://doi.org/10.1038/nphoton.2015.197
  20. S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vuckovic, A. Majumdar and X. Xu, Nature 520, 69 (2015). https://doi.org/10.1038/nature14290
  21. C. H. Liu, Y. C. Chang, T. B. Norris and Z. Zhong, Nature Nanotech. 9, 273 (2014). https://doi.org/10.1038/nnano.2014.31
  22. Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen and H. Zhang, ACS Nano 6, 74 (2012). https://doi.org/10.1021/nn2024557
  23. W. Choi, M. Y. Cho, A. Konar, J. H. Lee, G. B. Cha, S. C. Hong, S. Kim, J. Kim, D. Jena, J. Joo and S. Kim, Adv. Mater. 24, 5832 (2012). https://doi.org/10.1002/adma.201201909
  24. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic and A. Kis, Nature Nanotech. 8, 497 (2013). https://doi.org/10.1038/nnano.2013.100
  25. F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia and P. Avouri, Nature Nanotech. 4, 839 (2009). https://doi.org/10.1038/nnano.2009.292
  26. C. H. Lee, G. H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone and P. Kim, Nature Nanotech. 9, 676 (2014). https://doi.org/10.1038/nnano.2014.150
  27. H. Zeng, J. Dai, W. Yao, D. Xiao and X. Cui, Nature Nanotech. 7, 490 (2012). https://doi.org/10.1038/nnano.2012.95
  28. Y. J. Zhang, T. Oka, R. Suzuki, J. T. Ye and Y. Iwasa, Science 344, 725 (2014). https://doi.org/10.1126/science.1251329
  29. A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis and A. Imamoglu, Nature Nanotech. 10, 491 (2015). https://doi.org/10.1038/nnano.2015.60
  30. M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J. Y. Veuillen, J. Marcus, P. Kossacki and M. Potemski, Nature Nanotech. 10, 503 (2015). https://doi.org/10.1038/nnano.2015.67
  31. A. J. Shields, Nature Photon. 1, 215 (2007). https://doi.org/10.1038/nphoton.2007.46
  32. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang and X. Zhang, Nature 474, 64 (2011). https://doi.org/10.1038/nature10067
  33. C. T. Phare, Y. H. D. Lee, J. Cardenas and M. Lipson, Nature Photon. 9, 511 (2015). https://doi.org/10.1038/nphoton.2015.122
  34. Y. Li, Y. Rao, K. F. Mak, Y. You, S. Wang, C. R. Dean and T. E. Heinz, Nano Lett. 13, 3329 (2013). https://doi.org/10.1021/nl401561r
  35. W. T. Hsu, Z. A. Zhao, L. J. Li, C. H. Chen, M. H. Chiu, P. S. Chang, Y. C. Chou and W. H. Chang, ACS Nano 8, 2951 (2014). https://doi.org/10.1021/nn500228r