Acknowledgement
Supported by : 한국연구재단
References
- Ario, I. (2004). Homoclinic bifurcation and chaos attractor in elastic two-bar truss. International Journal of Non-Linear Mechanics, 39(4), 605-617. https://doi.org/10.1016/S0020-7462(03)00002-7
- Barrio, R., Blesa, F., & Lara, M. (2005). VSVO formulation of the Taylor method for the numerical solution of ODEs. Computers & mathematics with Applications, 50, 93-111. https://doi.org/10.1016/j.camwa.2005.02.010
- Bi, Q., & Dai, H. (2000). Analysis of non-linear dynamics and bifurcations of a shallow arch subjected to periodic excitation with internal resonance, Journal of Sound and Vibration. 233(4), 557-571.
- Blair, K., Krousgrill, C., & Farris, T. (1996). Non-linear dynamic response of shallow arches to harmonic forcing. Journal of Sound and Vibration, 194(3), 353-367. https://doi.org/10.1006/jsvi.1996.0363
- Blendez, A., & Hernandez, T. (2007). Application of He's homotopy perturbation method to the doffing-harmonic oscillator. International Journal of Nonlinear Science and Numerical Simulation, 8(1), 79-88. https://doi.org/10.1515/IJNSNS.2007.8.1.79
- Budiansky, B., & Roth, R. (1962). Axisymmetric dynamic buckling of clamped shallow spherical shells; Collected papers on instability of shells structures. NASA TN D-1510, Washington DC, 597-606.
- Bulenda, Th., & Knippers, J. (2001). Stability of grid shells, Computers and Structures, 79, 1161-1174 https://doi.org/10.1016/S0045-7949(01)00011-6
- Chen, J., & Lin, J. (2006). Stability of a shallow arch with one end moving at constant speed. International Journal of Non-Linear Mechanics, 41(5), 706-715. https://doi.org/10.1016/j.ijnonlinmec.2006.04.004
- Chen, J., Ro, W. & Lin, J. (2009). Exact static and dynamic critical loads of a sinusoidal arch under a point force at the midpoint. International Journal of Non-Linear Mechanics, 44(1), 66-70. https://doi.org/10.1016/j.ijnonlinmec.2008.08.006
- Choong, K. K., & Hangai, Y. (1993). Review on methods of bifurcation analysis for geometrically nonlinear structures, Bulletin of the IASS, 34(112), 133-149.
- Chowdhury, M., & Hashim, I. (2008). Analytical solutions to heat transfer equations by homotopy perturbation method revisited. Physics Letters A, 372, 1240-1243. https://doi.org/10.1016/j.physleta.2007.09.015
- Chowdhury, M., Hashim, I., & Abdulaziz, O. (2007). Application of homotopy perturbation method to nonlinear population dynamics models. Physics Letters A, 368, 251-258. https://doi.org/10.1016/j.physleta.2007.04.007
- Eftekhari, S. A. (2016). Differential quadrature procedure for in-plane vibration analysis of variable thickness circular arches traversed by a moving point load, Applied Mathematical Modelling, In Press, doi:10.1016/j.apm.2015.11.046
- Gutman, S., Ha, J., & Lee, S. (2013). Parameter identification for weakly damped shallow arches. Journal of Mathematical Analysis and Applications, 403(1), 297-313. https://doi.org/10.1016/j.jmaa.2013.02.047
- Ha, J. H., Gutman, S., Shon, S. D., & Lee, S. J. (2014). Stability of shallow arches under constant load. International Journal of Non-linear Mechanics, 58, 120-127. https://doi.org/10.1016/j.ijnonlinmec.2013.08.004
- He, J. (1999). Homotopy perturbation technique. Computer Methods in Applied Mechanics and Engineering, 178, 257-262. https://doi.org/10.1016/S0045-7825(99)00018-3
- Kim, S., Kang, M., Kwun, T., & Hangai, Y. (1997). Dynamic instability of shell-like shallow trusses considering damping. Computers and Structures, 64, 481-489. https://doi.org/10.1016/S0045-7949(96)00141-1
- Lacarbonara, W., & Rega, G. (2003). Resonant nonlinear normal modes-part2: activation/ orthogonality conditions for shallow structural systems. International Journal of Non-linear Mechanics, 38, 873-887. https://doi.org/10.1016/S0020-7462(02)00034-3
- Lin, J., & Chen, J. (2003). Dynamic snap-through of a laterally loaded arch under prescribed end motion. International Journal of Solids and Structures, 40, 4769-4787. https://doi.org/10.1016/S0020-7683(03)00181-1
- Lopez, A., Puente, I., & Serna, M.A. (2007). Numerical model and experimental tests on single-layer latticed domes with semi-rigid joints. Computers and Structures, 85, 360-374. https://doi.org/10.1016/j.compstruc.2006.11.025
- Shon, S., Kim, S., Lee, S., & Kim, J. (2011). A study on the critical point and bifurcation according to load mode of dome-typed space frame structures. Journal of the Korean Association for Spatial Structures, 11(1), 121-130. https://doi.org/10.9712/KASS.2011.11.1.121
- Shon, S., Ha, J., & Lee, S. (2012). Nonlinear dynamic analysis of space truss by using multistage homotopy perturbation method. Journal of Korean Society for Noise and Vibration Engineering, 22(9), 879-888. https://doi.org/10.5050/KSNVE.2012.22.9.879
- Shon, S., & Lee, S. (2013). Critical load and effective buckling length factor of dome-typed space frame accordance with variation of member rigidity. Journal of the Korean Association for Spatial Structures, 13(1), 87-96. https://doi.org/10.9712/KASS.2013.13.1.087
- Shon, S., Lee, S., Ha, J., & Cho, G. (2015). Semi-analytic solution and stability of a space truss using a multi-step Taylor series method. Materials, 8(5), 2400-2414. https://doi.org/10.3390/ma8052400
- Shon, S., Lee, S., & Lee, K. (2013). Characteristics of bifurcation and buckling load of space truss in consideration of initial imperfection and load mode. Journal of Zhejiang University-SCIENCE A, 14(3), 206-218. https://doi.org/10.1631/jzus.A1200114
- Hwang, K., Lee, S., & Shon, S. (2015). Buckling load of single-layered lattice roof structure considering asymmetric snow load. Journal of the Korean Association for Spatial Structures, 15(3), 43-49. https://doi.org/10.9712/KASS.2015.15.3.043