DOI QR코드

DOI QR Code

The National Highway, Expressway Tunnel Video Incident Detection System performance analysis and reflect attributes for double deck tunnel in great depth underground space

국도, 고속국도 터널 영상유고감지시스템 성능분석 및 대심도 복층터널 특성반영 방안

  • Kim, Tae-Bok (R&D Center, Voim Information Technologies Co., Ltd.)
  • Received : 2016.03.29
  • Accepted : 2016.06.01
  • Published : 2016.07.31

Abstract

The video incident detection System is a probe for rapid detecting the walker, falling, stopped, backwards, smoke situation in tunnel. Recently, the importance is increases from the downtown double deck tunnel in great depth underground space[1], but the legal basis is weak and the vulnerable situation experimental data. So, In this paper, we introduce a long-term log data analysis information in the tunnenl video incident detection system installed and experimental results in order to verify the feasibility of apply to video incident detection system for the double deck tunnel. It is proposed a few things about derives the problem of existing video incident detection system, improvements and reflect attributes for double deck tunnel. The contents described in this paper will contribute to refine the prototype of video incident detection system will apply to future double deck multi-layer tunnels.

영상유고감지시스템은 터널내 보행자, 낙하물, 정지차량, 역주행, 화재(연기) 등 돌발 상황시에 초동감지 목적의 감지시스템으로 최근 도심지의 대심도 지하도로 및 복층터널 등에서 중요성이 부각되고 있다[1] 그러므로 본 논문에서는 영상유고감지시스템을 대심도 복층터널에 적용하는 것의 타당성을 검증하기 위하여 본 시스템이 설치된 국도, 고속국도 터널을 대상으로 장기간 로그데이터 분석을 실시한 내용과 실험 결과를 소개하고, 이를 바탕으로 기존 영상유고감지시스템의 문제점 도출과 개선방안 그리고 일반터널과는 상이한 복층터널 설계에 대한 이해를 통해 복층터널 특성반영 방안에 대하여 몇가지 사항을 제안하였다.

Keywords

References

  1. Korea Institute of Construction Technolog, "Development of Design and Construction Technology for Double Deck Tunnel in Great Depth Underground Space," Ministry of Land, Infrastructure and Transport Science and Technology Agency Proposal, pp.20-58, June 2015.
  2. ITS Korea, "Building performance evalution methode of the tunnel video incidents detection system and extended to study," The Korea Highway Corportion Final report, pp. 5-7, Feb 2012.
  3. Korean Tunneling and Underground Space Association Land Transportation, "Road tunnel disaster prevention facilities installation and care instructions," Ministry of Land, Infrastructure and Transport Science and Technology Agency, pp.32, 40-61, January 2014.
  4. Korea ITS Association, "Tunnel incident image standards on detection system performance test method," Korea Intelligent Transportation System Association ITSK-00062, pp.3-37, January 2012.
  5. Kim, Hwan-jun, Choi Chang-rim, "Long road tunnel design case study - Jinhae to tunnel ventilation and emergency planning center," Tunnelling Technology, vol.11, no.4, pp. 52-55, May 2014.
  6. Yoo, Yong-Ho, "An Experiment Study on Performance Evaluation of the Video Incident Detection System," Korea Institute of Fire Science&Engineering, C-1, pp.155-158, September 2010.
  7. FLIR Systems Inc., "TRAFFICON VIDEO DETECTION APPLICATION," Trafficon report
  8. FLIR Systems Inc., "Intelligent Transportation System Camera talk document," FLIR report
  9. FLIR Systems Inc., "FLIR Traffic Management & Video Processing / How FLIR ITS video detection solution help you manage and control road traffic," FLIR report
  10. Voim Information Technologies Corp., "IP Surveillance Solution of Visionetware Technology," [Internet]. Available : http://www.voimit.com,blog.daum.net/visionetware
  11. Sony, "The Basics of Camera Technology," B&P Group Sony
  12. Il-Sik Chang, "Analysis of the Requirement on the Intelligent CCTV Camera in Subway Environment," The Korean Society for railway, 1151-1156(6pages), pp.3-4 Nov 2008.
  13. Hee-Sin Lee, Sung-Hwan Jeong, "Vision-Based Fast Detection System for Tunnel Incident," The Journal of The Korea Institute of Intelligent Transport Systems, vol 9, no 1, pp. 9-18 , January 2010.

Cited by

  1. 기계학습(machine learning) 기반 터널 영상유고 자동 감지 시스템 개발을 위한 사전검토 연구 vol.19, pp.1, 2017, https://doi.org/10.9711/ktaj.2017.19.1.095
  2. 딥러닝 기반 터널 영상유고감지 시스템 개발 연구 vol.19, pp.6, 2016, https://doi.org/10.9711/ktaj.2017.19.6.915
  3. 터널 내 돌발상황 오탐지 영상의 반복 학습을 통한 딥러닝 추론 성능의 자가 성장 효과 vol.21, pp.3, 2016, https://doi.org/10.9711/ktaj.2019.21.3.419