DOI QR코드

DOI QR Code

Thin-Film Composite (TFC) Membranes with Hydrophilic Ethyl Cellulose-g-poly(ethylene glycol) (EP) Substrates for Forward Osmosis (FO) Application

친수성을 가지는 에틸셀룰로스-폴리에틸렌글리콜 가지형 고분자의 정삼투 복합막 지지층으로의 응용

  • Yu, Yun Ah (School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University) ;
  • Kim, Jin-joo (School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University) ;
  • Kang, Hyo (Department of Chemical Engineering, Dong-A University) ;
  • Lee, Jong-Chan (School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University)
  • 유윤아 (서울대학교 화학생물공학부) ;
  • 김진주 (서울대학교 화학생물공학부) ;
  • 강효 (동아대학교 화학공학과) ;
  • 이종찬 (서울대학교 화학생물공학부)
  • Received : 2016.01.07
  • Accepted : 2016.03.15
  • Published : 2016.08.01

Abstract

Ethyl cellulose-g-poly(ethylene glycol) (EP) was synthesized by esterification of carboxylic acid functionalized methoxy polyethylene glycol (MPEG-COOH) with ethyl cellulose (EC) in order to develop a hydrophilic substrate for thin-film composite (TFC) membrane in a forward osmosis (FO) system. A porous EP substrate, fabricated by a non-solvent induced phase separation method, was found to be more hydrophilic than the EC substrate due to the presence of polyethylene glycol (PEG) side chains in the EP. Since the EP substrate exhibits smaller water contact angles and higher porosity, the structural parameter (S) of TFC-EP is smaller than that of TFC-EC, indicating that internal concentration polarization (ICP) within porous substrates can occur less when TFC-EP is used as a membrane. For example, the water flux value of the TFC-EP is 15.7 LMH, whereas the water flux value of the TFC-EC is only 6.6 LMH. Therefore, we strongly believe that the TFC-EP could be a promising candidate with good FO performances.

본 연구에서는 폴리에틸렌글리콜-카르복실산과 에틸셀룰로스 사이의 에스테르화 반응을 통해 에틸셀룰로스-폴리에틸렌글리콜 가지형 고분자를 합성하고 이를 정삼투 수처리 공정을 위한 복합막의 지지체 소재로 사용하고자 하였다. 합성한 에틸셀룰로스-폴리에틸렌글리콜은 핵자기공명 분광법 및 푸리에 변환 적외선 분광법을 통해 그 구조를 확인하였다. 비용매 유도 상분리법을 통해 에틸셀룰로스-폴리에틸렌글리콜 소재를 이용한 지지체를 형성하여 이를 에티셀룰로스 지지체와 비교해 보았을 때, 폴리에틸렌글리콜 작용기의 도입으로 인하여 친수성이 증가한 것을 확인하였다. 지지체 위에 계면중합을 통해 폴리아미드 활성층이 추가된 복합막을 형성하였고, 염화나트륨 용액을 유도 용액으로 사용하여 cross-flow 방식의 정삼투 수처리 장치에서의 성능을 비교하였다. 2M 농도의 염화나트륨 수용액을 유도 용액으로 사용하였을 때, 6.6 LMH의 수투과도를 보이는 에틸셀룰로스 지지체를 사용한 복합막에 비해, 에틸셀룰로스-폴리에틸렌글리콜 지지체를 사용한 복합막은 15.7 LMH의 증가된 수투과도를 보여주었으며, 이는 지지체의 증가된 친수성에서 기인한 것이다. 이러한 결과는 에틸셀룰로스-폴리에틸렌글리콜 지지체를 이용한 복합막의 막구조 파라미터가 감소한 것에서도 설명할 수 있으며, 지지체 소재의 친수성 증가가 정삼투 공정에 최적화된 복합막 지지체 구조를 형성할 수 있음을 시사한다.

Keywords

References

  1. Raphael, S., "Energy Issues in Desalination Processes," Environ. Sci. Technol., 42, 8193-8201(2008). https://doi.org/10.1021/es801330u
  2. Shannon, M. A., "Science and Technology for Water Purification in the Coming Decades," Nature, 452, 301-310(2008). https://doi.org/10.1038/nature06599
  3. Kessler, J. O. and Moody, C. D., "Drinking Water from Sea Water by Forward Osmosis," Desalination, 18, 297-306(1976). https://doi.org/10.1016/S0011-9164(00)84119-3
  4. Ahmad, A. L., Abdulkarim, A. A., Ismail, S. and Seng, O. B., "Optimization of PES/ZnO Mixed Matrix Membrane Preparation Using Response Surface Methodology for Humic Acid Removal," Korean J. Chem. Eng., 33, 997-1007(2016). https://doi.org/10.1007/s11814-015-0221-9
  5. McGinnis, R. L. and Elimelech, M., "Global Challenges in Energy and Water Supply: The Promise of Engineered Osmosis," Environ. Sci. Technol., 42, 8625-8629(2008). https://doi.org/10.1021/es800812m
  6. Miller, J. E. and Evans, L. R., "Forward Osmosis: A New Approach to Water Purification and Desalination," Sandia National Laboratories Report, 1-51(2006).
  7. Chung, T.-S., "Forward Osmosis Processes: Yesterday, Today and Tomorrow," Desalination, 287, 78-81(2012). https://doi.org/10.1016/j.desal.2010.12.019
  8. Chen, G. E., Sun, L., Xu, Z. L., Yang, H., Hunag H. H. and Liu, Y. J., "Surface Modification of Poly(vinylidene fluoride) Membrane with Hydrophilic and Anti-fouling Performance via a Two-step Polymerization," Korean J. Chem. Eng., 32, 2492-2500(2015). https://doi.org/10.1007/s11814-015-0105-z
  9. Lee, K.-W., Han, M.-J. and Nam, S.-T., "Characteristics of Flux Decline in Forward Osmosis Process for Asymmetric Cellulose Membrane," Korean Chem. Eng. Res., 52, 328-334(2014). https://doi.org/10.9713/kcer.2014.52.3.328
  10. McCutcheon, J. R. and Elimelech, M., "Influence of Concentrative and Dilutive Internal Concentration Polarization on Flux Behavior in Forward Osmosis," J. Membr. Sci., 284, 237-247(2006). https://doi.org/10.1016/j.memsci.2006.07.049
  11. Gray, G. T., McCutcheon, J. R. and Elimelech, M., "Internal Concentration Polarization in Forward Osmosis: Role of Membrane Orientation," Desalination, 197, 1-8(2006). https://doi.org/10.1016/j.desal.2006.02.003
  12. Mehta, G. D. and Loeb, S., "Performance of Permasep B-9 and B-10 Membranes in Various Osmotic Regions and At High Osmotic Pressures," J. Membr. Sci., 4, 335-349(1979).
  13. Yip, N. Y., Tiraferri, A., Phillip, W. A., Schiffman, J. D. and Elimelech, M., "High Performance Thin-film Composite Forward Osmosis Membrane," Environ. Sci. Technol., 44, 3812-3818(2010). https://doi.org/10.1021/es1002555
  14. Chou, S., Shi, L., Wang, R., Tang, C. Y., Qiu, C. and Fane, A. G., "Characteristics and Potential Applications of a Novel Forward Osmosis Hollow Fiber Membrane," Desalination, 261(3), 365-372(2010). https://doi.org/10.1016/j.desal.2010.06.027
  15. Widjojo, N., Chung, T.-S., Weber, M., Maletzko, C. and Warzelhan, V., "The Role of Sulphonated Polymer and Macrovoid-Free Structure in the Support Layer for Thin-Film Composite (TFC) Forward Osmosis (FO) Membranes," J. Membr. Sci., 383(1-2), 214-223(2011). https://doi.org/10.1016/j.memsci.2011.08.041
  16. Ma, N., Wei, J., Qi, S., Zhao, Y., Gao, Y. and Tang, C. Y., "Nanocomposite Substrates for Controlling Internal Concentration Polarization in Forward Osmosis Membranes," J. Membr. Sci., 441, 54-62(2013). https://doi.org/10.1016/j.memsci.2013.04.004
  17. Emadzadeh, D., Lau, W. J., Ismail, A. F. and Rahbari-Sisakht, M., "Synthesis and Characterization of Thin Film Nanocomposite Forward Osmosis Membrane with Hydrophilic Nanocomposite Support to Reduce Internal Concentration Polarization," J. Membr. Sci., 449, 74-85(2014). https://doi.org/10.1016/j.memsci.2013.08.014
  18. Emadzadeh, D., Lau, W. J. and Ismail, A. F., "Synthesis of Thin Film Nanocomposite Forward Osmosis Membrane with Enhancement in Water Flux without Sacrificing Salt Rejection," Desalination, 330, 90-99(2013). https://doi.org/10.1016/j.desal.2013.10.003
  19. Emadzadeh, D., Lau, W. J., Matsuura, T., Rahbari-Sisakht, and Ismail, A. F., "A Novel Thin Film Composite Forward Osmosis Membrane Prepared from Psf-Tio2 Nanocomposite Substrate for Water Desalination," Chem. Eng. J., 237, 70-80(2014). https://doi.org/10.1016/j.cej.2013.09.081
  20. Klemm, D., Heublein, B., Fink, H.-P. and Bohn, A., "Cellulose: Fascinating Biopolymer and Sustainable Raw Material," Angew. Chem. Int. Ed. Engl., 44, 3358-3393(2005). https://doi.org/10.1002/anie.200460587
  21. Tiraferri, A., Yip, N. Y., Straub, A. P., Castrillon, S. R.-V. and Elimelech, M., "A Method for the Simultaneous Determination of Transport and Structural Parameters of Forward Osmosis Membranes," J. Membr. Sci., 444, 523-538(2013). https://doi.org/10.1016/j.memsci.2013.05.023
  22. Neises, B. and Steglich, W., "Simple Method for the Esterification of Carboxylic Acids," Angew. Chem. Int. Ed. Engl., 17, 522-524(1978) https://doi.org/10.1002/anie.197805221
  23. Widjojo, N., Chung, T.-S., Weber, M., Maletzko, C. and Warzelhan, V., "The Role of Sulphonated Polymer and Macrovoid-Free Structure in the Support Layer for Thin-Film Compoiste (TFC) Forward Osmosis (FO) Membranes," J. Membr. Sci., 383(1-2), 214-223(2011). https://doi.org/10.1016/j.memsci.2011.08.041
  24. Ghosh, A. K., Jeong, B. -H., Huang, X. and Hoek, E. M. V., "Impacts of Reaction and Curing Conditions on Polyamide Composite Reverse Osmosis Membrane Properties," J. Membr. Sci., 311, 34-45(2008). https://doi.org/10.1016/j.memsci.2007.11.038
  25. Ming, X., Price, W. E. and Nghiem, L. D., "Rejection of Pharmaceutically Active Compounds by Forward Osmosis: Role of Solution pH and Membrane Orientation," Sep. Purif. Technol., 93, 107-114(2012). https://doi.org/10.1016/j.seppur.2012.03.030
  26. Han, G., Chung, T.-S., Toriida, M. and Tamai, S., "Thin-Film Composite Forward Osmosis Membranes with Novel Hydrophilic Supports for Desalination," J. Membr. Sci., 423, 543-555(2012).
  27. Zhengzhong, Z. Lee, J. Y. and Chung, T.-S., "Thin Film Composite Forward-Osmosis Membranes with Enhanced Internal Osmotic Pressure for Internal Concentration Polarization Reduction," Chem. Eng. J., 249, 236-245(2014). https://doi.org/10.1016/j.cej.2014.03.049
  28. Han, J., Cho, Y. H., Kong, H., Han, S. and Park, H. B., "Preparation and Characterization of Novel Acetylated Cellulose Ether (Ace) Membranes for Desalination Applications," J. Membr. Sci., 428, 533-545(2013). https://doi.org/10.1016/j.memsci.2012.10.043