DOI QR코드

DOI QR Code

Characteristics of Microbial Fuel Cells Using Pig Waste and sPAES Membrane

돼지 분뇨와 sPAES 막을 이용한 미생물 연료전지의 특성

  • Received : 2016.03.11
  • Accepted : 2016.04.14
  • Published : 2016.08.01

Abstract

Microbial fuel cells (MFC) were operated with pig wastes and PEMFC (Proton Exchange Membrane Fuel Cells) MEA (Membrane and Electrode Assembly). Performance of hydrocarbon membrane was compared with that of perfluoro membrane at MFC condition. Sulfonated-Poly(Arylene Ether Sulfone) was used as hydrocarbon membrane and Gore membrane was used as perfluoro membrane. OCV of sPAES MEA was 50mV higher than that of Gore MEA and power density of sPAES MEA was similar that of Gore MEA. Reinforcement of sPAES membrane stabilized the performance of MEA in MFC. The highest performance was obtained at temperature of $45^{\circ}C$ and with culture solution circulation rate of 50 ml/min. The highest power density was $1,100mW/m^2$ at optimum condition in MFC using pig waste.

고분자전해질 연료전지용 MEA (Membrane and Electrode Assembly)와 돼지분뇨를 이용해 미생물연료전지(MFC)를 구동하였다. 미생물 연료전지에서 과불소계막과 탄화수소막의 성능을 비교하였다. 탄화수소막으로 sPAES 막을 사용하였고 과불소계막은 Gore 막을 사용했다. sPAES MEA가 Gore MEA보다 OCV는 50mV 높았고 출력 밀도는 비슷했다. sPAES 막을 강화시킴으로써 성능을 안정시킬 수 있었다. 미생물 연료전지의 셀 온도 $45^{\circ}C$에서 최고의 성능을 얻었고 배양액 순환속도 50 ml/min에서 최고의 성능을 얻었다. 최적 조건에서 돼지 분뇨를 이용한 미생물연료전지에서 최고 $1,100mW/m^2$의 출력 밀도가 발생하였다.

Keywords

References

  1. Nester, E. W., Anderson, D. G., Roberts, C. E. and Nerster, M. T., Microbiology: A Human Perspective, 7th ed., McGraw-Hill, New York(2011).
  2. Environmental Statistics Yearbook Vol. 25, the Ministry of Environment(2012).
  3. Grzebyk, M., Pozniak, G., "Microbial Fuel Cells (MFCs) with Interpolymer Cation Exchange Membranes," Separation and Purification Technology, 41, 321-328(2005). https://doi.org/10.1016/j.seppur.2004.04.009
  4. Kim, Y. S., Chu, C. H., Jeong, J. J., Ahn, M. W., Na, I. C., Lee, J. H. and Park, K. P., "Characteristics of Microbial Fuel Cells Using Livestock Waste and Degradation of MEA," Korean Chem. Eng. Res., 52(2), 175-181(2014). https://doi.org/10.9713/kcer.2014.52.2.175
  5. Morrisa, J. M., Jin, S., Crimid, B. and Prudend, A., "Microbial Fuel Cell in Enhancing Anaerobic Biodegradation of Diesel," Chemical Engineering Journal, 146, 161-167(2009). https://doi.org/10.1016/j.cej.2008.05.028
  6. Nandy, A., et al., "Utilization of Proteinaceous Materials for Power Generation in a Mediatorless Microbial Fuel Cell by a New Electrogenix Bacteria Lysinibacillus sphaericus VA5," Enzyme and Microbial Technology, 53, 339-344(2013). https://doi.org/10.1016/j.enzmictec.2013.07.006
  7. Du, Z., Li, H. and Gu, T., "A State of the Art Review on Microbial Fuel Cells: A Promising Technology for Wastewater Treatment and Bioenergy," Biotechnology Advances, 25, 464-482(2007). https://doi.org/10.1016/j.biotechadv.2007.05.004
  8. Jeong, J. J., Shin, Y. C., Lee, M. S., Lee, D. H., Na, I. C., Lee, H. and Park, K. P., "Characteristics of Poly(arylene ether sulfone) Membrane for Proton Exchange Membrane Fuel Cells," Korean Chem. Eng. Res., 51(5), 556-560(2013). https://doi.org/10.9713/kcer.2013.51.5.556
  9. Min, B. K., Kim, J. R., Oh, S. E., Regan, J. M. and Logan, B. E., "Electricity Generation from Swine Wastewater Using Microbial Fuel Cells," Water Research, 39, 4961-4968(2005). https://doi.org/10.1016/j.watres.2005.09.039
  10. Song, J. H., Kim, S. H., Ahn, B. K., Ko, J. J. and Park, K. P., "Effect of Electrode Degradation on the Membrane Degradation in PEMFC," Korean Chem. Eng. Res., 51(1), 68-72(2013). https://doi.org/10.9713/kcer.2013.51.1.68
  11. Lee, H., Kim, T. H., Sim, W. J., Kim, S. H., Ahn, B. K., Lim, T. W. and Park, K. P., "Pinhole Formation in PEMFC Membrane After Electrochemical Degradation and Wet/dry Cycling Test," Korean J. Chem. Eng., 28, 487-491(2011). https://doi.org/10.1007/s11814-010-0381-6