GENERALIZED GOLDEN SHAPED HYPERSURFACES IN LORENTZ SPACE FORMS

Ximin Liu and Yan Zhao

Abstract

In this paper, we define the generalized golden shaped hypersurfaces in Lorentz space forms. Based on the classification of proper semi-Riemannian hypersurfaces in semi-Riemannian real space forms, we obtain the whole families of the generalized golden shaped hypersurfaces in Lorentz space forms.

1. Introduction

The Golden ratio has many applications in many parts of mathematics, for example, natural sciences, music, art, philosophies and computational science [8]. In the past few years, the Golden ratio has played a more and more significant role in modern physical research and atomic physics [4]. The Golden ratio also has interesting properties in topology of four-manifolds, in conformal field theory, in mathematical probability theory, in Cantorian spacetime [7] and in differential geometry.

The notion of golden structure on a manifold M was introduced in $[2,5]$ as a (1,1)-tensor field on M which satisfies the equation: $J^{2}=J+I$, where I is the usual Kronecker tensor field of M. It attracts many authors, attentions to focus on a class of well-known objects namely hypersurfaces in real space forms. Recently, the golden shaped hypersurfaces in real space forms were defined and the whole families of the golden shaped hypersurfaces were obtained in [3]. The golden shaped hypersurfaces in Lorentz space forms were defined and the whole families of the golden shaped hypersurfaces were obtained in [9]. In this paper, we define the generalized golden shaped hypersurfaces in Lorentz space forms. Based on the classification of proper semi-Riemannian hypersurfaces in semiRiemannian real space forms, we obtain the whole families of the generalized golden shaped hypersurfaces in Lorentz space forms.

[^0]
2. Preliminaries

Let \mathbb{R}_{1}^{n} be an n-dimensional real vector space together with an inner product given by

$$
\langle x, x\rangle=-x_{1}^{2}+\sum_{i=2}^{n+1} x_{i}^{2}
$$

where $x=\left(x_{1}, \ldots, x_{n}\right)$ is the natural coordinate of \mathbb{R}_{1}^{n}.

$$
\begin{gathered}
S_{1}^{n}(c)=\left\{\left(x_{1}, \ldots, x_{n+1}\right) \in \mathbb{R}_{1}^{n+1} \left\lvert\,-x_{1}^{2}+\sum_{i=2}^{n+1} x_{i}^{2}=\frac{1}{c}\right.\right\}(c>0) \\
H_{1}^{n}(c)=\left\{\left(x_{1}, \ldots, x_{n+1}\right) \in \mathbb{R}_{1}^{n+1} \left\lvert\,-\sum_{i=1}^{2} x_{1}^{2}+\sum_{i=3}^{n+1} x_{i}^{2}=\frac{1}{c}\right.\right\}(c<0) .
\end{gathered}
$$

These spaces are complete and of constant curvature c. In general relativity, the Lorentz manifolds $\mathbb{R}_{1}^{n}, S_{1}^{n}(c), H_{1}^{n}(c)$ are respectably known as the Minkowski, de Sitter and anti-de Sitter space, which is called Lorentz space form and is denoted by $N_{1}^{n}(c)$.

Let M be a hypersurface in Lorentz space form $N_{1}^{n+1}(c)$. For a certain normal vector field N, we put $\epsilon=\langle N, N\rangle$. Let $A=A_{N}$ be the associated shape operator and μ_{1}, \ldots, μ_{n} be the principal curvatures of M. If A can be expressed by a real diagonal matrix with respect to an orthonormal frame at each point of the semi-Riemannian manifold M, then A is said to be proper. M is said to be proper if A is proper for a unit normal vector N at each point of M.

Definition 1. A hypersurface M in Lorentz space form $N_{1}^{n+1}(c)$ is called golden shaped hypersurface if A is a golden structure, i.e., $A^{2}=A+I$.

In this paper, we give the definition of generalized golden-shaped hypersurfaces:

Definition 2. A proper hypersurface M in Lorentz space form $N_{1}^{n+1}(c)$ is called generalized golden shaped hypersurface if A is a generalized golden structure, i.e., $A^{2}=a A+b I$, where a, b are constants satisfying $a^{2}+4 b \geq 0$.

3. The classification of golden shaped hypersurfaces

Let M be a generalized golden shaped hypersurface. Then the principal curvatures of $M, \mu_{1}, \ldots, \mu_{n}$, which are the eigenvalues of A, are $\lambda_{1}=\frac{a+\sqrt{a^{2}+4 b}}{2}$ and $\lambda_{2}=\frac{a-\sqrt{a^{2}+4 b}}{2}$ if $a^{2}+4 b>0$. Especially, the principal curvatures of M, which are the eigenvalues of A, are $\lambda_{1}=\lambda_{2}=\frac{a}{2}$ if $a^{2}+4 b=0$. According to [6], the manifold M is an isoparametric hypersurface and based on [1], we get the following theorems.

Theorem 1. The only generalized golden shaped hypersurfaces in Minkowski space \mathbb{R}_{1}^{n+1} are as follows:

Case 1: $a^{2}+4 b=0$:
(1) If $a \neq 0$,
(i) $S_{1}^{n}\left(\frac{a^{2}}{4}\right)=\left\{x \in \mathbb{R}_{1}^{n+1} \left\lvert\,-x_{1}^{2}+\sum_{i=2}^{n+1} x_{i}^{2}=\frac{4}{a^{2}}\right.\right\}$ with $A=\frac{a}{2} I$ and $\varepsilon=1$.
(ii) $H^{n}\left(-\frac{a^{2}}{4}\right)=\left\{x \in \mathbb{R}_{1}^{n+1} \left\lvert\,-x_{1}^{2}+\sum_{i=2}^{n+1} x_{i}^{2}=-\frac{4}{a^{2}}\right.\right\}$ with $A=\frac{a}{2} I$ and $\varepsilon=-1$.
(2) If $a=0$,
(i) $\mathbb{R}_{1}^{n}=\left\{x \in \mathbb{R}_{1}^{n+1} \mid x^{n+1}=0\right\}$ with $A=O$ and $\varepsilon=1$.
(ii) $\mathbb{R}^{n}=\left\{x \in \mathbb{R}_{1}^{n+1} \mid x^{1}=0\right\}$ with $A=O$ and $\varepsilon=-1$.

Case 2: $a^{2}+4 b>0$:
(1) If $b \neq 0$,
(i) $S_{1}^{n}\left(\lambda_{i}^{2}\right)=\left\{x \in \mathbb{R}_{1}^{n+1} \left\lvert\,-x_{1}^{2}+\sum_{i=2}^{n+1} x_{i}^{2}=\frac{1}{\lambda_{i}^{2}}\right.\right\}$ with $A=\lambda_{i} I, i=1,2$ and $\varepsilon=1$.
(ii) $H^{n}\left(-\lambda_{i}^{2}\right)=\left\{x \in \mathbb{R}_{1}^{n+1} \left\lvert\,-x_{1}^{2}+\sum_{i=2}^{n+1} x_{i}^{2}=-\frac{1}{\lambda_{i}^{2}}\right.\right\}$ with $A=\lambda_{i} I, i=1,2$ and $\varepsilon=-1$.
(2) If $b=0$,
(i) $\mathbb{R}_{1}^{n}=\left\{x \in \mathbb{R}_{1}^{n+1} \mid x^{n+1}=0\right\}$ with $A=O$ and $\varepsilon=1$.
(ii) $\mathbb{R}^{n}=\left\{x \in \mathbb{R}_{1}^{n+1} \mid x^{1}=0\right\}$ with $A=O$ and $\varepsilon=-1$.
(iii) $S_{1}^{n}\left(a^{2}\right)=\left\{x \in \mathbb{R}_{1}^{n+1} \left\lvert\,-x_{1}^{2}+\sum_{i=2}^{n+1} x_{i}^{2}=\frac{1}{a^{2}}\right.\right\}$ with $A=a I$ and $\varepsilon=1$.
(iv) $H^{n}\left(-a^{2}\right)=\left\{x \in \mathbb{R}_{1}^{n+1} \left\lvert\,-x_{1}^{2}+\sum_{i=2}^{n+1} x_{i}^{2}=-\frac{1}{a^{2}}\right.\right\}$ with $A=a I$ and $\varepsilon=-1$.
(v) $\mathbb{R}^{r} \times S_{1}^{n-r}\left(a^{2}\right)=\left\{x \in \mathbb{R}_{1}^{n+1} \left\lvert\,-x_{1}^{2}+\sum_{i=r+2}^{n+1} x_{i}^{2}=\frac{1}{a^{2}}\right.\right\}$ with $A=$ $O_{r} \oplus a I_{n-r}$ and $\varepsilon=1$.
(vi) $\mathbb{R}^{r} \times H^{n-r}\left(-a^{2}\right)=\left\{x \in \mathbb{R}_{1}^{n+1} \left\lvert\,-x_{1}^{2}+\sum_{i=r+2}^{n+1} x_{i}^{2}=-\frac{1}{a^{2}}\right.\right\}$ with $A=$ $O_{r} \oplus a I_{n-r}$ and $\varepsilon=-1$.
Proof. Case 1: Suppose $a^{2}+4 b=0, \lambda_{1}=\lambda_{2}=\frac{a}{2}$, we distinguish the following two cases:
(1) If $a \neq 0, \lambda_{1}=\lambda_{2} \neq 0$, we get $\mu_{1}=\mu_{2}=\cdots=\mu_{n}=\frac{a}{2}$ and $c=\varepsilon \frac{a^{2}}{4} \neq 0$ for $\varepsilon= \pm 1$, then M is totally umbilical and is as follows:
(i) $M=S_{1}^{n}\left(\frac{a^{2}}{4}\right)=\left\{x \in \mathbb{R}_{1}^{n+1} \left\lvert\,-x_{1}^{2}+\sum_{i=2}^{n+1} x_{i}^{2}=\frac{4}{a^{2}}\right.\right\}$ with $A=\frac{a}{2} I$ and $\varepsilon=1$.
(ii) $M=H^{n}\left(-\frac{a^{2}}{4}\right)=\left\{x \in \mathbb{R}_{1}^{n+1} \left\lvert\,-x_{1}^{2}+\sum_{i=2}^{n+1} x_{i}^{2}=-\frac{4}{a^{2}}\right.\right\}$ with $A=\frac{a}{2} I$ and $\varepsilon=-1$.
(2) If $a=0, \lambda_{1}=\lambda_{2}=0$, we get $\mu_{1}=\mu_{2}=\cdots=\mu_{n}=0$ and $c=0$, then M is as follows:
(i) $M=\mathbb{R}_{1}^{n}=\left\{x \in \mathbb{R}_{1}^{n+1} \mid x^{n+1}=0\right\}$ with $A=O$ and $\varepsilon=1$.
(ii) $M=\mathbb{R}^{n}=\left\{x \in \mathbb{R}_{1}^{n+1} \mid x^{1}=0\right\}$ with $A=O$ and $\varepsilon=-1$.

Case 2: Suppose $a^{2}+4 b>0$:
(1) If $b \neq 0, \mu_{1}=\mu_{2}=\cdots=\mu_{n}=\lambda_{i} \neq 0$, we get $c=\varepsilon \lambda_{i}^{2} \neq 0$ for $\varepsilon= \pm 1$ and $i= \pm 1$, then M is as follows:
(i) $M=S_{1}^{n}\left(\lambda_{i}^{2}\right)=\left\{x \in \mathbb{R}_{1}^{n+1} \left\lvert\,-x_{1}^{2}+\sum_{i=2}^{n+1} x_{i}^{2}=\frac{1}{\lambda_{i}^{2}}\right.\right\}$ with $A=\lambda_{i} I, i=1,2$ and $\varepsilon=1$.
(ii) $M=H^{n}\left(-\lambda_{i}^{2}\right)=\left\{x \in \mathbb{R}_{1}^{n+1} \left\lvert\,-x_{1}^{2}+\sum_{i=2}^{n+1} x_{i}^{2}=-\frac{1}{\lambda_{i}^{2}}\right.\right\}$ with $A=\lambda_{i} I$, $i=1,2$ and $\varepsilon=-1$.
(2) If $b=0$, then $a \neq 0$ and $\lambda_{1}=0, \lambda_{2}=a$ or $\lambda_{1}=a, \lambda_{2}=0$.

Suppose $\mu_{1}=\mu_{2}=\cdots=\mu_{n}=0$, we get $c=0$. Then we have
(i) $M=\mathbb{R}_{1}^{n}=\left\{x \mid x^{n+1}=0\right\}$ with $A=O$ and $\varepsilon=1$.
(ii) $M=\mathbb{R}^{n}=\left\{x \mid x^{1}=0\right\}$ with $A=O$ and $\varepsilon=-1$.

Suppose $\mu_{1}=\mu_{2}=\cdots=\mu_{n}=a \neq 0$, we get $c=\varepsilon a^{2} \neq 0$. Then we have
(iii) $M=S_{1}^{n}\left(a^{2}\right)=\left\{x \in \mathbb{R}_{1}^{n+1} \left\lvert\,-x_{1}^{2}+\sum_{i=2}^{n+1} x_{i}^{2}=\frac{1}{a^{2}}\right.\right\}$ with $A=a I$ and $\varepsilon=1$.
(iv) $M=H^{n}\left(-a^{2}\right)=\left\{x \in \mathbb{R}_{1}^{n+1} \left\lvert\,-x_{1}^{2}+\sum_{i=2}^{n+1} x_{i}^{2}=-\frac{1}{a^{2}}\right.\right\}$ with $A=a I$ and $\varepsilon=-1$.

Suppose for $1<r<n, \mu_{1}=\cdots=\mu_{r}=a \neq 0$ and $\mu_{r+1}=\cdots=\mu_{n}=0$, then $c_{1}=\varepsilon a^{2} \neq 0$ and $c_{2}=0$. Then we have
(v) $\mathbb{R}^{r} \times S_{1}^{n-r}\left(a^{2}\right)=\left\{x \in \mathbb{R}_{1}^{n+1} \left\lvert\,-x_{1}^{2}+\sum_{i=r+2}^{n+1} x_{i}^{2}=\frac{1}{a^{2}}\right.\right\}$ with $A=$ $O_{r} \oplus a I_{n-r}$ and $\varepsilon=1$.
(vi) $\mathbb{R}^{r} \times H^{n-r}\left(-a^{2}\right)=\left\{x \in \mathbb{R}_{1}^{n+1} \left\lvert\,-x_{1}^{2}+\sum_{i=r+2}^{n+1} x_{i}^{2}=-\frac{1}{a^{2}}\right.\right\}$ with $A=$ $O_{r} \oplus a I_{n-r}$ and $\varepsilon=-1$.

Theorem 2. The only generalized golden shaped hypersurfaces in de Sitter space S_{1}^{n+1} are as follows:

Case 1: If $a^{2}+4 b=0$:
(i) $S_{1}^{n}\left(1+\frac{a^{2}}{4}\right)=\left\{x \in S_{1}^{n+1} \subset \mathbb{R}_{1}^{n+2} \left\lvert\, x_{n+2}=\frac{|a|}{\sqrt{a^{2}+4}}\right.\right\}$ with $A=\frac{a}{2} I$ and $\varepsilon=1$.
(ii) If $a= \pm 2$,
$\mathbb{R}^{n}=\left\{x \in S_{1}^{n+1} \subset \mathbb{R}_{1}^{n+2} \mid x_{1}=x_{n+2}+t_{0}\right\}\left(t_{0}>0\right)$ with $A= \pm I$ and $\varepsilon=-1$.
(iii) If $|a|>2$,
$H^{n}\left(1-\frac{a^{2}}{4}\right)=\left\{x \in S_{1}^{n+1} \subset \mathbb{R}_{1}^{n+2} \left\lvert\, x_{n+2}=\frac{|a|}{\sqrt{a^{2}-4}}\right.\right\}$ with $A=\frac{a}{2} I$ and $\varepsilon=-1$.
(iv) If $-2<a<2$,
$S^{n}\left(1-\frac{a^{2}}{4}\right)=\left\{x \in S_{1}^{n+1} \subset \mathbb{R}_{1}^{n+2} \left\lvert\, x_{1}=\frac{|a|}{\sqrt{4-a^{2}}}\right.\right\}$ with $A=\frac{a}{2} I$ and $\varepsilon=-1$.
Case 2: If $a^{2}+4 b>0$:
(1) Suppose $\mu_{1}=\mu_{2}=\cdots=\mu_{n}=\lambda_{1}$, there are the following four cases:
(i) $S_{1}^{n}\left(1+\lambda_{1}^{2}\right)=\left\{x \in S_{1}^{n+1} \subset \mathbb{R}_{1}^{n+2} \left\lvert\, x_{n+2}=\frac{\left|\lambda_{1}\right|}{\sqrt{1+\lambda_{1}^{2}}}\right.\right\}$ with $A=\lambda_{1} I$ and $\varepsilon=1$.
(ii) If $(a, b) \in\{(a, b) \mid a-b+1=0, a<-2\} \cup\{(a, b) \mid a+b-1=0, a<2\}$, $\mathbb{R}^{n}=\left\{x \in S_{1}^{n+1} \subset \mathbb{R}_{1}^{n+2} \mid x_{1}=x_{n+2}+t_{0}\right\}\left(t_{0}>0\right)$ with $A= \pm I$ and $\varepsilon=-1$.
(iii) If $(a, b) \in\{(a, b) \mid a+b-1<0,-2 \leq a<2\} \cup\{(a, b) \mid a-b+1<$ $0, a+b-1<0, a<-2\}$,
$S^{n}\left(1-\lambda_{1}^{2}\right)=\left\{x \in S_{1}^{n+1} \subset \mathbb{R}_{1}^{n+2} \left\lvert\, x_{1}=\frac{\left|\lambda_{1}\right|}{\sqrt{1-\lambda_{1}^{2}}}\right.\right\}$ with $A=\lambda_{1} I$ and $\varepsilon=-1$.
(iv) If $(a, b) \in\{(a, b) \mid a+b-1>0, a<2\} \cup\{(a, b) \mid a \geq 2\} \cup\{(a, b) \mid a<$ $-2, a-b+1>0\}$,
$H^{n}\left(1-\lambda_{1}^{2}\right)=\left\{x \in S_{1}^{n+1} \subset \mathbb{R}_{1}^{n+2} \left\lvert\, x_{n+2}=\frac{\left|\lambda_{1}\right|}{\sqrt{\lambda_{1}^{2}-1}}\right.\right\}$ with $A=\lambda_{1} I$ and $\varepsilon=-1$.
(2) Suppose $\mu_{1}=\mu_{2}=\cdots=\mu_{n}=\lambda_{2}$,
(i) $S_{1}^{n}\left(1+\lambda_{2}^{2}\right)=\left\{x \in S_{1}^{n+1} \subset \mathbb{R}_{1}^{n+2} \left\lvert\, x_{n+2}=\frac{\left|\lambda_{2}\right|}{\sqrt{1+\lambda_{2}^{2}}}\right.\right\}$ with $A=\lambda_{2} I$ and $\varepsilon=1$.
(ii) If $(a, b) \in\{(a, b) \mid a-b+1=0, a>-2\} \cup\{(a, b) \mid a+b-1=0, a>2\}$, $\mathbb{R}^{n}=\left\{x \in S_{1}^{n+1} \subset \mathbb{R}_{1}^{n+2} \mid x_{1}=x_{n+2}+t_{0}\right\}\left(t_{0}>0\right)$ with $A= \pm I$ and $\varepsilon=-1$.
(iii) If $(a, b) \in\{(a, b) \mid a-b+1>0,-2<a \leq 2\} \cup\{(a, b) \mid a-b+1>$ $0, a+b-1>0, a>2\}$,
$S^{n}\left(1-\lambda_{2}^{2}\right)=\left\{x \in S_{1}^{n+1} \subset \mathbb{R}_{1}^{n+2} \left\lvert\, x_{1}=\frac{\left|\lambda_{2}\right|}{\sqrt{1-\lambda_{2}^{2}}}\right.\right\}$ with $A=\lambda_{2} I$ and $\varepsilon=-1$.
(iv) If $(a, b) \in\{(a, b) \mid a-b+1<0, a>-2\} \cup\{(a, b) \mid a \leq-2\} \cup$ $\{(a, b) \mid a>2, a+b-1<0\}$,
$H^{n}\left(1-\lambda_{2}^{2}\right)=\left\{x \in S_{1}^{n+1} \subset \mathbb{R}_{1}^{n+2} \left\lvert\, x_{n+2}=\frac{\left|\lambda_{2}\right|}{\sqrt{\lambda_{2}^{2}-1}}\right.\right\}$ with $A=\lambda_{2} I$ and $\varepsilon=-1$.
(3) Suppose $\mu_{1}=\mu_{2}=\cdots=\mu_{r}=\lambda_{1}$, and $\mu_{r+1}=\cdots=\mu_{n}=\lambda_{2}$, for $1 \leq r \leq n$:
(i) If $b=-1$ and $a>2$,
$S^{r}\left(1-\lambda_{2}^{2}\right) \times H^{n-r}\left(1-\lambda_{1}^{2}\right)=\left\{x \in S_{1}^{n+1} \subset \mathbb{R}_{1}^{n+2} \mid \sum_{i=2}^{2+r} x_{i}^{2}=\right.$ $\left.\frac{1}{1-\lambda_{2}^{2}},-x_{1}^{2}+\sum_{i=r+3}^{n+2} x_{i}^{2}=\frac{1}{1-\lambda_{1}^{2}}\right\}$ with $A=\lambda_{2} I_{r} \oplus \lambda_{1} I_{n-r}$ and $\varepsilon=-1$.
(ii) If $b=-1$ and $a<-2$,
$S^{r}\left(1-\lambda_{1}^{2}\right) \times H^{n-r}\left(1-\lambda_{2}^{2}\right)=\left\{x \in S_{1}^{n+1} \subset \mathbb{R}_{1}^{n+2} \mid \sum_{i=2}^{2+r} x_{i}^{2}=\right.$ $\left.\frac{1}{1-\lambda_{1}^{2}},-x_{1}^{2}+\sum_{i=r+3}^{n+2} x_{i}^{2}=\frac{1}{1-\lambda_{2}^{2}}\right\}$ with $A=\lambda_{1} I_{r} \oplus \lambda_{2} I_{n-r}$ and $\varepsilon=-1$.
(iii) If $b=1$,
$S^{r}\left(1+\lambda_{i}^{2}\right) \times S_{1}^{n-r}\left(1+\lambda_{j}^{2}\right)=\left\{x \in S_{1}^{n+1} \subset \mathbb{R}_{1}^{n+2} \mid \sum_{i=2}^{2+r} x_{i}^{2}=\right.$ $\left.\frac{1}{1+\lambda_{i}^{2}},-x_{1}^{2}+\sum_{i=r+3}^{n+2} x_{i}^{2}=\frac{1}{1+\lambda_{j}^{2}}\right\}$ with $A=\lambda_{i} I_{r} \oplus \lambda_{j} I_{n-r}, i, j=1,2$, $i \neq j$ and $\varepsilon=-1$.

Proof. Case 1: If $a^{2}+4 b=0, \lambda_{1}=\lambda_{2}=\frac{a}{2}$, we distinguish the following four cases:
(i) If $\varepsilon=1$, we get $c=1+\frac{a^{2}}{4}$. Then $M=S_{1}^{n}\left(1+\frac{a^{2}}{4}\right)=\left\{x \in S_{1}^{n+1} \subset \mathbb{R}_{1}^{n+2} \mid\right.$ $\left.x_{n+2}=\frac{|a|}{\sqrt{a^{2}+4}}\right\}$ with $A=\frac{a}{2} I$.
(ii) If $\varepsilon=-1$ and $a= \pm 2$, we get $\mu_{1}=\mu_{2}=\cdots=\mu_{n}= \pm 1$ and $c=0$. Then $M=\mathbb{R}^{n}=\left\{x \in S_{1}^{n+1} \subset \mathbb{R}_{1}^{n+2} \mid x_{1}=x_{n+2}+t_{0}\right\}\left(t_{0}>0\right)$ with $A= \pm I$.
(iii) If $\varepsilon=-1$ and $|a|>2$, we get $c=1-\frac{a^{2}}{4}<0$. Then we have $M=$ $H^{n}\left(1-\frac{a^{2}}{4}\right)=\left\{x \in S_{1}^{n+1} \subset \mathbb{R}_{1}^{n+2} \left\lvert\, x_{n+2}=\frac{|a|}{\sqrt{a^{2}-4}}\right.\right\}$ with $A=\frac{a}{2} I$.
(iv) If $\varepsilon=-1$ and $-2<a<2$, we get $c=1-\frac{a^{2}}{4}>0$. Then we have $M=S^{n}\left(1-\frac{a^{2}}{4}\right)=\left\{x \in S_{1}^{n+1} \subset \mathbb{R}_{1}^{n+2} \left\lvert\, x_{1}=\frac{|a|}{\sqrt{4-a^{2}}}\right.\right\}$ with $A=\frac{a}{2} I$.

Case 2: If $a^{2}+4 b>0$:
(1) Suppose $\mu_{1}=\mu_{2}=\cdots=\mu_{n}=\lambda_{1}$, there are the following four cases:
(i) If $\varepsilon=1$, we get $c=1+\lambda_{1}^{2} \geq 1$. Then we have $M=S_{1}^{n}\left(1+\lambda_{1}^{2}\right)=\{x \in$ $\left.S_{1}^{n+1} \subset \mathbb{R}_{1}^{n+2} \left\lvert\, x_{n+2}=\frac{\left|\lambda_{1}\right|}{\sqrt{1+\lambda_{1}^{2}}}\right.\right\}$ with $A=\lambda_{1} I$.
(ii) If $\varepsilon=-1$ and $(a, b) \in\{(a, b) \mid a-b+1=0, a<-2\} \cup\{(a, b) \mid a+b-1=$ $0, a<2\}$, we get $c=1-\lambda_{1}^{2}=0$. Then we have $M=\mathbb{R}^{n}=\left\{x \in S_{1}^{n+1} \subset\right.$ $\left.\mathbb{R}_{1}^{n+2} \mid x_{1}=x_{n+2}+t_{0}\right\}\left(t_{0}>0\right)$ with $A= \pm I$.
(iii) If $\varepsilon=-1$ and $(a, b) \in\{(a, b) \mid a+b-1<0,-2 \leq a<2\} \cup\{(a, b) \mid a-$ $b+1<0, a+b-1<0, a<-2\}$, we get $0<c=1-\lambda_{1}^{2} \leq 1$. Then we have $M=S^{n}\left(1-\lambda_{1}^{2}\right)=\left\{x \in S_{1}^{n+1} \subset \mathbb{R}_{1}^{n+2} \left\lvert\, x_{1}=\frac{\left|\lambda_{1}\right|}{\sqrt{1-\lambda_{1}^{2}}}\right.\right\}$ with $A=\lambda_{1} I$.
(iv) If $\varepsilon=-1$ and $(a, b) \in\{(a, b) \mid a+b-1>0, a<2\} \cup\{(a, b) \mid a \geq 2\}$ $\cup\{(a, b) \mid a<-2, a-b+1>0\}$, we get $c=1-\lambda_{1}^{2}<0$. Then we have $M=H^{n}\left(1-\lambda_{1}^{2}\right)=\left\{x \in S_{1}^{n+1} \subset \mathbb{R}_{1}^{n+2} \left\lvert\, x_{n+2}=\frac{\left|\lambda_{1}\right|}{\sqrt{\lambda_{1}^{2}-1}}\right.\right\}$ with $A=\lambda_{1} I$.
(2) Suppose $\mu_{1}=\mu_{2}=\cdots=\mu_{n}=\lambda_{2}$,
(i) If $\varepsilon=1$, we get $c=1+\lambda_{2}^{2} \geq 1$. Then we have $M=S_{1}^{n}\left(1+\lambda_{2}^{2}\right)=\{x \in$ $\left.S_{1}^{n+1} \subset \mathbb{R}_{1}^{n+2} \left\lvert\, x_{n+2}=\frac{\left|\lambda_{2}\right|}{\sqrt{1+\lambda_{2}^{2}}}\right.\right\}$ with $A=\lambda_{2} I$.
(ii) If $\varepsilon=-1$ and $(a, b) \in\{(a, b) \mid a-b+1=0, a>-2\} \cup\{(a, b) \mid a+b-1=$ $0, a>2\}$, we get $c=1-\lambda_{2}^{2}=0$. Then we have $M=\mathbb{R}^{n}=\left\{x \in S_{1}^{n+1} \subset\right.$ $\left.\mathbb{R}_{1}^{n+2} \mid x_{1}=x_{n+2}+t_{0}\right\}\left(t_{0}>0\right)$ with $A= \pm I$.
(iii) If $\varepsilon=-1$ and $(a, b) \in\{(a, b) \mid a-b+1>0,-2<a \leq 2\} \cup\{(a, b) \mid a-$ $b+1>0, a+b-1>0, a>2\}$, we get $0<c=1-\lambda_{2}^{2} \leq 1$. Then we have $M=S^{n}\left(1-\lambda_{2}^{2}\right)=\left\{x \in S_{1}^{n+1} \subset \mathbb{R}_{1}^{n+2} \left\lvert\, x_{1}=\frac{\left|\lambda_{2}\right|}{\sqrt{1-\lambda_{2}^{2}}}\right.\right\}$ with $A=\lambda_{2} I$.
(iv) If $\varepsilon=-1$ and $(a, b) \in\{(a, b) \mid a-b+1<0, a>-2\} \cup\{(a, b) \mid a \leq-2\}$ $\cup\{(a, b) \mid a>2, a+b-1<0\}$, we get $c=1-\lambda_{2}^{2}<0$. Then we have $M=H^{n}\left(1-\lambda_{2}^{2}\right)=\left\{x \in S_{1}^{n+1} \subset \mathbb{R}_{1}^{n+2} \left\lvert\, x_{n+2}=\frac{\left|\lambda_{2}\right|}{\sqrt{\lambda_{2}^{2}-1}}\right.\right\}$ with $A=\lambda_{2} I$.
(3) Suppose $\mu_{1}=\mu_{2}=\cdots=\mu_{r}=\lambda_{1}$, and $\mu_{r+1}=\cdots=\mu_{n}=\lambda_{2}$, for $1 \leq r \leq n$:
(i) If $\varepsilon=-1, b=-1$ and $a>2$, we get $\lambda_{1} \lambda_{2}=1, c_{1}=1-\lambda_{1}^{2}>0$ and $c_{2}=1-\lambda_{2}^{2}<0$. Then we have $M=S^{r}\left(1-\lambda_{2}^{2}\right) \times H^{n-r}\left(1-\lambda_{1}^{2}\right)=\left\{x \in S_{1}^{n+1} \subset\right.$ $\left.\mathbb{R}_{1}^{n+2} \left\lvert\, \sum_{i=2}^{2+r} x_{i}^{2}=\frac{1}{1-\lambda_{2}^{2}}\right.,-x_{1}^{2}+\sum_{i=r+3}^{n+2} x_{i}^{2}=\frac{1}{1-\lambda_{1}^{2}}\right\}$ with $A=\lambda_{2} I_{r} \oplus \lambda_{1} I_{n-r}$.
(ii) If $\varepsilon=-1, b=-1$ and $a<-2$, we get $\lambda_{1} \lambda_{2}=1, c_{1}=1-\lambda_{1}^{2}<0$ and $c_{2}=1-\lambda_{2}^{2}>0$. Then we have $M=S^{r}\left(1-\lambda_{1}^{2}\right) \times H^{n-r}\left(1-\lambda_{2}^{2}\right)=\left\{x \in S_{1}^{n+1} \subset\right.$ $\left.\mathbb{R}_{1}^{n+2} \left\lvert\, \sum_{i=2}^{2+r} x_{i}^{2}=\frac{1}{1-\lambda_{1}^{2}}\right.,-x_{1}^{2}+\sum_{i=r+3}^{n+2} x_{i}^{2}=\frac{1}{1-\lambda_{2}^{2}}\right\}$ with $A=\lambda_{1} I_{r} \oplus \lambda_{2} I_{n-r}$.
(iii) If $\varepsilon=1$ and $b=1$, we get $\lambda_{1} \lambda_{2}=1, c_{i}=1+\lambda_{i}^{2}>0$ for $i=1,2$. Then we have $M=S^{r}\left(1+\lambda_{i}^{2}\right) \times S_{1}^{n-r}\left(1+\lambda_{j}^{2}\right)=\left\{x \in S_{1}^{n+1} \subset \mathbb{R}_{1}^{n+2} \mid \sum_{i=2}^{2+r} x_{i}^{2}=\right.$ $\left.\frac{1}{1+\lambda_{i}^{2}},-x_{1}^{2}+\sum_{i=r+3}^{n+2} x_{i}^{2}=\frac{1}{1+\lambda_{j}^{2}}\right\}$ with $A=\lambda_{i} I_{r} \oplus \lambda_{j} I_{n-r}, i, j=1,2$ and $i \neq j$.

Theorem 3. The only generalized golden-shaped hypersurfaces in anti-de Sitter space $H_{1}^{n+1}(-1)$ are as follows:

Case 1: If $a^{2}+4 b=0$:
(i) $H^{n}\left(-1-\frac{a^{2}}{4}\right)=\left\{x \in H_{1}^{n+1}(-1) \subset \mathbb{R}_{2}^{n+2} \left\lvert\, x_{1}=\frac{|a|}{\sqrt{a^{2}+4}}\right.\right\}$ with $A=\frac{a}{2}$ and $\varepsilon=-1$.
(ii) If $a= \pm 2, \mathbb{R}_{1}^{n}=\left\{x \in H_{1}^{n+1}(-1) \subset \mathbb{R}_{2}^{n+2} \mid x_{1}=x_{n+2}+t_{0}\right\}\left(t_{0}>0\right)$ with $A= \pm I$ and $\varepsilon=1$.
(iii) If $a \in\{|a|>2\}, S_{1}^{n}\left(\frac{a^{2}}{4}-1\right)=\left\{x \in H_{1}^{n+1}(-1) \subset \mathbb{R}_{2}^{n+2} \left\lvert\, x_{1}=\frac{|a|}{\sqrt{a^{2}-4}}\right.\right\}$ with $A=\frac{a}{2} I$ and $\varepsilon=1$.
(iv) If $a \in\{-2<a<2\}, H_{1}^{n}\left(\frac{a^{2}}{4}-1\right)=\left\{x \in S_{1}^{n+1} \subset \mathbb{R}_{1}^{n+2} \mid x_{n+2}=\right.$ $\left.\frac{|a|}{\sqrt{4-a^{2}}}\right\}$ with $A=\frac{a}{2} I$ and $\varepsilon=1$.
Case 2: If $a^{2}+4 b>0$:
(i) Suppose $\mu_{1}=\mu_{2}=\cdots=\mu_{n}=\lambda_{1}$, there are the following four cases:
(1) $H^{n}\left(-1-\lambda_{1}^{2}\right)=\left\{x \in H_{1}^{n+1}(-1) \subset \mathbb{R}_{2}^{n+2} \left\lvert\, x_{1}=\frac{\left|\lambda_{1}\right|}{\sqrt{1+\lambda_{1}^{2}}}\right.\right\}$ with $A=\lambda_{1} I$ and $\varepsilon=-1$.
(2) If $(a, b) \in\{(a, b) \mid a-b+1=0, a<-2\} \cup\{(a, b) \mid a+b-1=0, a<2\}$, $\mathbb{R}_{1}^{n}=\left\{x \in H_{1}^{n+1}(-1) \subset \mathbb{R}_{2}^{n+2} \mid x_{1}=x_{n+2}+t_{0}\right\}\left(t_{0}>0\right)$ with $A= \pm I$ and $\varepsilon=1$.
(3) If $(a, b) \in\{(a, b) \mid a+b-1<0,-2 \leq a<2\} \cup\{(a, b) \mid a-b+1<$ $0, a+b-1<0, a<-2\}, H_{1}^{n}\left(\lambda_{1}^{2}-1\right)=\left\{x \in H_{1}^{n+1}(-1) \subset \mathbb{R}_{2}^{n+2} \mid\right.$ $\left.x_{n+2}=\frac{\left|\lambda_{1}\right|}{\sqrt{1-\lambda_{1}^{2}}}\right\}$ with $A=\lambda_{1} I$ and $\varepsilon=1$.
(4) If $(a, b) \in\{(a, b) \mid a+b-1>0, a<2\} \cup\{(a, b) \mid a \geq 2\} \cup\{(a, b) \mid a<$ $-2, a-b+1>0\}, S_{1}^{n}\left(\lambda_{1}^{2}-1\right)=\left\{x \in H_{1}^{n+1}(-1) \subset \mathbb{R}_{2}^{n+2} \left\lvert\, x_{1}=\frac{\left|\lambda_{1}\right|}{\sqrt{\lambda_{1}^{2}-1}}\right.\right\}$ with $A=\lambda_{1} I$ and $\varepsilon=1$.
(ii) Suppose $\mu_{1}=\mu_{2}=\cdots=\mu_{n}=\lambda_{2}$, there are the following four cases:
(1) $H^{n}\left(-1-\lambda_{2}^{2}\right)=\left\{x \in H_{1}^{n+1}(-1) \subset \mathbb{R}_{2}^{n+2} \left\lvert\, x_{1}=\frac{\left|\lambda_{2}\right|}{\sqrt{1+\lambda_{2}^{2}}}\right.\right\}$ with $A=\lambda_{2} I$ and $\varepsilon=-1$.
(2) If $(a, b) \in\{(a, b) \mid a-b+1=0, a>-2\} \cup\{(a, b) \mid a+b-1=0, a>2\}$, $\mathbb{R}_{1}^{n}=\left\{x \in H_{1}^{n+1}(-1) \subset \mathbb{R}_{2}^{n+2} \mid x_{1}=x_{n+2}+t_{0}\right\}\left(t_{0}>0\right)$ with $A= \pm I$ and $\varepsilon=1$.
(3) If $(a, b) \in\{(a, b) \mid a-b+1>0,-2<a \leq 2\} \cup\{(a, b) \mid a-b+1>$ $0, a+b-1>0, a>2\}, H_{1}^{n}\left(\lambda_{2}^{2}-1\right)=\left\{x \in H_{1}^{n+1}(-1) \subset \mathbb{R}_{2}^{n+2} \mid x_{n+2}=\right.$ $\left.\frac{\left|\lambda_{2}\right|}{\sqrt{1-\lambda_{2}^{2}}}\right\}$ with $A=\lambda_{2} I$ and $\varepsilon=1$.
(4) If $(a, b) \in\{(a, b) \mid a-b+1<0, a>-2\} \cup\{(a, b) \mid a \leq-2\} \cup$ $\{(a, b) \mid a>2, a+b-1<0\}, H_{1}^{n}\left(\lambda_{2}^{2}-1\right)=\left\{x \in H_{1}^{n+1}(-1) \subset \mathbb{R}_{2}^{n+2} \mid\right.$ $\left.x_{1}=\frac{\left|\lambda_{2}\right|}{\sqrt{\lambda_{2}^{2}-1}}\right\}$ with $A=\lambda_{2} I$ and $\varepsilon=1$.
(iii) Suppose $\mu_{1}=\mu_{2}=\cdots=\mu_{r}=\lambda_{1}$, and $\mu_{r+1}=\cdots=\mu_{n}=\lambda_{2}$, for $1 \leq r \leq n$:
(1) If $b=-1$ and $a>2, S_{1}^{r}\left(\lambda_{1}^{2}-1\right) \times H^{n-r}\left(\lambda_{2}^{2}-1\right)=\left\{x \in H_{1}^{n+1}(-1) \subset\right.$ $\left.\mathbb{R}_{2}^{n+2} \left\lvert\,-x_{1}^{2}+\sum_{i=3}^{2+r} x_{i}^{2}=\frac{1}{\lambda_{1}^{2}-1}\right.,-x_{2}^{2}+\sum_{i=r+3}^{n+2} x_{i}^{2}=\frac{1}{\lambda_{2}^{2}-1}\right\}$ with $A=$ $\lambda_{1} I_{r} \oplus \lambda_{2} I_{n-r}$ and $\varepsilon=1$.
(2) If $b=-1$ and $a<-2, S_{1}^{r}\left(\lambda_{2}^{2}-1\right) \times H^{n-r}\left(\lambda_{1}^{2}-1\right)=\left\{x \in H_{1}^{n+1}(-1) \subset\right.$ $\left.\mathbb{R}_{2}^{n+2} \left\lvert\,-x_{1}^{2}+\sum_{i=3}^{2+r} x_{i}^{2}=\frac{1}{\lambda_{2}^{2}-1}\right.,-x_{2}^{2}+\sum_{i=r+3}^{n+2} x_{i}^{2}=\frac{1}{\lambda_{1}^{2}-1}\right\}$ with $A=$ $\lambda_{2} I_{r} \oplus \lambda_{1} I_{n-r}$ and $\varepsilon=1$.
(3) If $b=1, H^{r}\left(-1-\lambda_{i}^{2}\right) \times H_{1}^{n-r}\left(-1-\lambda_{j}^{2}\right)=\left\{x \in H_{1}^{n+1}(-1) \subset \mathbb{R}_{2}^{n+2} \mid\right.$ $\left.-x_{1}^{2}+\sum_{i=3}^{2+r} x_{i}^{2}=\frac{1}{-1-\lambda_{i}^{2}},-x_{2}^{2}+\sum_{i=r+3}^{n+2} x_{i}^{2}=\frac{1}{-1-\lambda_{j}^{2}}\right\}$ with $A=\lambda_{i} I_{r} \oplus$ $\left.\left.\lambda_{j} I_{n-r}\right)\right), i, j=1,2, i \neq j$ and $\varepsilon=-1$.

Proof. Case 1: If $a^{2}+4 b=0$, then $\lambda_{1}=\lambda_{2}=\frac{a}{2}$.
(i) If $\varepsilon=-1$, we get $c=-\frac{a^{2}}{4}-1<0$. Then $M=H^{n}\left(-1-\frac{a^{2}}{4}\right)=\{x \in$ $\left.H_{1}^{n+1}(-1) \subset R_{2}^{n+2} \left\lvert\, x_{1}=\frac{|a|}{\sqrt{a^{2}+4}}\right.\right\}$ with $A=\frac{a}{2} I$.
(ii) If $\varepsilon=1$ and $a= \pm 2$, we get $c=-1+\frac{a^{2}}{4}=0$. Then $M=\mathbb{R}_{1}^{n}=\{x \in$ $\left.H_{1}^{n+1}(-1) \subset \mathbb{R}_{2}^{n+2} \mid x_{1}=x_{n+2}+t_{0}\right\}\left(t_{0}>0\right)$ with $A= \pm I$.
(iii) If $\varepsilon=1$ and $|a|>2$, we get $c=-1+\frac{a^{2}}{4}>0$. Then $M=S_{1}^{n}\left(\frac{a^{2}}{4}-1\right)=$ $\left\{x \in H_{1}^{n+1}(-1) \subset \mathbb{R}_{2}^{n+2} \left\lvert\, x_{1}=\frac{|a|}{\sqrt{a^{2}-4}}\right.\right\}$ with $A=\frac{a}{2} I$.
(iv) If $\varepsilon=1$ and $-2<a<2$, we get $c=-1+\frac{a^{2}}{4}<0$. Then $M=$ $H_{1}^{n}\left(\frac{a^{2}}{4}-1\right)=\left\{x \in S_{1}^{n+1} \subset \mathbb{R}_{1}^{n+2} \left\lvert\, x_{n+2}=\frac{|a|}{\sqrt{4-a^{2}}}\right.\right\}$ with $A=\frac{a}{2} I$.

Case 2: If $a^{2}+4 b>0$:
(i) Suppose $\mu_{1}=\mu_{2}=\cdots=\mu_{n}=\lambda_{1}$, there are the following four cases:
(1) If $\varepsilon=-1$, we get $c=-\lambda_{1}^{2}-1<0$. Then $M=H^{n}\left(-1-\lambda_{1}^{2}\right)=\{x \in$ $\left.H_{1}^{n+1}(-1) \subset \mathbb{R}_{2}^{n+2} \left\lvert\, x_{1}=\frac{\left|\lambda_{1}\right|}{\sqrt{1+\lambda_{1}^{2}}}\right.\right\}$ with $A=\lambda_{1} I$.
(2) If $\varepsilon=1$ and $(a, b) \in\{(a, b) \mid a-b+1=0, a<-2\} \cup\{(a, b) \mid a+b-1=$ $0, a<2\}$, we get $c=\lambda_{1}^{2}-1=0$. Then $M=\mathbb{R}_{1}^{n}=\left\{x \in H_{1}^{n+1}(-1) \subset \mathbb{R}_{2}^{n+2} \mid\right.$ $\left.x_{1}=x_{n+2}+t_{0}\right\}\left(t_{0}>0\right)$ with $A= \pm I$.
(3) If $\varepsilon=1$ and $(a, b) \in\{(a, b) \mid a+b-1<0,-2 \leq a<2\} \cup\{(a, b) \mid a-$ $b+1<0, a+b-1<0, a<-2\}$, we get $-1 \leq c=\lambda_{1}^{2}-1<0$. Then $M=H_{1}^{n}\left(\lambda_{1}^{2}-1\right)=\left\{x \in H_{1}^{n+1}(-1) \subset \mathbb{R}_{2}^{n+2} \left\lvert\, x_{n+2}=\frac{\left|\lambda_{1}\right|}{\sqrt{1-\lambda_{1}^{2}}}\right.\right\}$ with $A=\lambda_{1} I$.
(4) If $\varepsilon=1$ and $(a, b) \in\{(a, b) \mid a+b-1>0, a<2\} \cup\{(a, b) \mid a \geq 2\} \cup$ $\{(a, b) \mid a<-2, a-b+1>0\}$, we get $c=\lambda_{1}^{2}-1>0$. Then $M=S_{1}^{n}\left(\lambda_{1}^{2}-1\right)=$ $\left\{x \in H_{1}^{n+1}(-1) \subset \mathbb{R}_{2}^{n+2} \left\lvert\, x_{1}=\frac{\left|\lambda_{1}\right|}{\sqrt{\lambda_{1}^{2}-1}}\right.\right\}$ with $A=\lambda_{1} I$.
(ii) Suppose $\mu_{1}=\mu_{2}=\cdots=\mu_{n}=\lambda_{2}$, there are the following four cases:
(1) If $\varepsilon=-1$, we get $c=-\lambda_{2}^{2}-1<0$. Then $M=H^{n}\left(-1-\lambda_{2}^{2}\right)=\{x \in$ $\left.H_{1}^{n+1}(-1) \subset \mathbb{R}_{2}^{n+2} \left\lvert\, x_{1}=\frac{\left|\lambda_{2}\right|}{\sqrt{1+\lambda_{2}^{2}}}\right.\right\}$ with $A=\lambda_{2} I$.
(2) If $\varepsilon=1$ and $(a, b) \in\{(a, b) \mid a-b+1=0, a>-2\} \cup\{(a, b) \mid a+b-1=$ $0, a>2\}$, we get $c=\lambda_{1}^{2}-1=0$. Then $M=\mathbb{R}_{1}^{n}=\left\{x \in H_{1}^{n+1}(-1) \subset \mathbb{R}_{2}^{n+2} \mid\right.$ $\left.x_{1}=x_{n+2}+t_{0}\right\}\left(t_{0}>0\right)$ with $A= \pm I$.
(3) If $\varepsilon=1$ and $(a, b) \in\{(a, b) \mid a-b+1>0,-2<a \leq 2\} \cup\{(a, b) \mid a-b+1>$ $0, a+b-1>0, a>2\}$, we get $-1 \leq c=\lambda_{1}^{2}-1<0 . M=H_{1}^{n}\left(\lambda_{2}^{2}-1\right)=\{x \in$ $\left.H_{1}^{n+1}(-1) \subset \mathbb{R}_{2}^{n+2} \left\lvert\, x_{n+2}=\frac{\left|\lambda_{2}\right|}{\sqrt{1-\lambda_{2}^{2}}}\right.\right\}$ with $A=\lambda_{2} I$.
(4) If $\varepsilon=1$ and $(a, b) \in\{(a, b) \mid a-b+1<0, a>-2\} \cup\{(a, b) \mid a \leq-2\} \cup$ $\{(a, b) \mid a>2, a+b-1<0\}$, we get $c=\lambda_{1}^{2}-1>0$. Then $M=H_{1}^{n}\left(\lambda_{2}^{2}-1\right)=$ $\left\{x \in H_{1}^{n+1}(-1) \subset \mathbb{R}_{2}^{n+2} \left\lvert\, x_{1}=\frac{\left|\lambda_{2}\right|}{\sqrt{\lambda_{2}^{2}-1}}\right.\right\}$ with $A=\lambda_{2} I$.
(iii) Suppose $\mu_{1}=\mu_{2}=\cdots=\mu_{r}=\lambda_{1}$, and $\mu_{r+1}=\cdots=\mu_{n}=\lambda_{2}$, for $1 \leq r \leq n$:
(1) If $\varepsilon=1$ and $b=-1$ and $a>2$, we get $\lambda_{1} \lambda_{2}=1$ and $c_{1}=\lambda_{1}^{2}-1>0$ and $c_{2}=\lambda_{2}^{2}-1<0$. Then we have $M=S_{1}^{r}\left(\lambda_{1}^{2}-1\right) \times H^{n-r}\left(\lambda_{2}^{2}-1\right)=\{x \in$ $\left.H_{1}^{n+1}(-1) \subset \mathbb{R}_{2}^{n+2} \left\lvert\,-x_{1}^{2}+\sum_{i=3}^{2+r} x_{i}^{2}=\frac{1}{\lambda_{1}^{2}-1}\right.,-x_{2}^{2}+\sum_{i=r+3}^{n+2} x_{i}^{2}=\frac{1}{\lambda_{2}^{2}-1}\right\}$ with $A=\lambda_{1} I_{r} \oplus \lambda_{2} I_{n-r}$.
(2) If $\varepsilon=1$ and $b=-1$ and $a<-2$, we get $\lambda_{1} \lambda_{2}=1$ and $c_{1}=\lambda_{1}^{2}-1<0$ and $c_{2}=\lambda_{2}^{2}-1>0$. Then we have $M=S_{1}^{r}\left(\lambda_{2}^{2}-1\right) \times H^{n-r}\left(\lambda_{1}^{2}-1\right)=\{x \in$ $\left.H_{1}^{n+1}(-1) \subset \mathbb{R}_{2}^{n+2} \left\lvert\,-x_{1}^{2}+\sum_{i=3}^{2+r} x_{i}^{2}=\frac{1}{\lambda_{2}^{2}-1}\right.,-x_{2}^{2}+\sum_{i=r+3}^{n+2} x_{i}^{2}=\frac{1}{\lambda_{1}^{2}-1}\right\}$ with $A=\lambda_{2} I_{r} \oplus \lambda_{1} I_{n-r}$.
(3) If $\varepsilon=-1$ and $b=-1$, we get $\lambda_{1} \lambda_{2}=1$ and $c_{i}=-1-\lambda_{i}^{2}<0$ for $i, j=1,2$. Then we have $M=H^{r}\left(-1-\lambda_{i}^{2}\right) \times H_{1}^{n-r}\left(-1-\lambda_{j}^{2}\right)=\{x \in$ $\left.H_{1}^{n+1}(-1) \subset \mathbb{R}_{2}^{n+2} \left\lvert\,-x_{1}^{2}+\sum_{i=3}^{2+r} x_{i}^{2}=\frac{1}{-1-\lambda_{i}^{2}}\right.,-x_{2}^{2}+\sum_{i=r+3}^{n+2} x_{i}^{2}=\frac{1}{-1-\lambda_{j}^{2}}\right\}$ with $A=\lambda_{i} I_{r} \oplus \lambda_{j} I_{n-r}, i, j=1,2$ and $i \neq j$.

Remark 1. Theorem 1, Theorem 2 and Theorem 3 are the generalization of the corresponding results in [9] respectively. That is, when $a=1$ and $b=1$, these theorems are the same as theorems in [9].

References

[1] N. Abe, N. Koike, and S. Yamaguchi, Congruence theorems for proper semi-Riemannian hypersurfaces in a real space form, Yokohama Math. J. 35 (1987), no. 1-2, 123-136.
[2] M.-C. Crasmareanu and C.-E. Hretcanu, Golden differential geometry, Chaos Solitons Fractals 38 (2008), no. 5, 1229-1238.
[3] M.-C. Crasmareanu, C.-E. Hretcanu, and M. I. Munteanu, Golden- and product-shaped hypersurfaces in real space forms, Int. J. Geom. Methods Mod. Phys. 10 (2013), no. 4, 1320006, 9 pp.
[4] R. Heyrovska, The Golden ratio ionic and atomic radii and bond lengths, Mol. Phys. 103 (2004), 877-882.
[5] C.-E. Hretcanu and M.-C. Crasmareanu, Applications of the golden ratio on Riemannian manifolds, Turkish J. Math. 33 (2009), no. 2, 179-191.
[6] M. A. Magid, Lorentzian isoparametric hypersurfaces, Pacific J. Math. 118 (1985), no. 1, 165-197.
[7] L. Marek-Crnjac, The golden mean in the topology of four-manifolds, inconformal field theory, in the mathematical probability theory and in Cantorian space-time, Chaos Solitons Fractals 28 (2006), 1113-1118.
[8] S. K. Sen and R. P. Agarwal, Golden ratio in science, as random sequence source, its computation and beyond, Comput. Math. Appl. 56 (2008), no. 2, 469-498.
[9] D. Yang and Y. Fu, The classification of golden shaped hypersurfaces in Lorentz space forms, J. Math. Anal. Appl. 412 (2014), no. 2, 1135-1139.

Ximin Liu
School of Mathematical Sciences
Dalian University of Technology
Dalian 116024, P. R. China
E-mail address: ximinliu@dlut.edu.cn
Yan Zhao
School of Mathematical Sciences
Dalian University of Technology
Dalian 116024, P. R. China
AND
Public Courses Teaching Department
Henan Light Industry School
Henan 450000, P. R. China
E-mail address: zy4012006@126.com

[^0]: Received November 16, 2015.
 2010 Mathematics Subject Classification. 53C40.
 Key words and phrases. generalized golden shaped hypersurface, proper hypersurface, shape operator, principal curvature.

 This work is supported by NSFC (No. 11371076 and 11431009).

