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GENERALIZED GOLDEN SHAPED HYPERSURFACES IN

LORENTZ SPACE FORMS

Ximin Liu and Yan Zhao

Abstract. In this paper, we define the generalized golden shaped hy-
persurfaces in Lorentz space forms. Based on the classification of proper
semi-Riemannian hypersurfaces in semi-Riemannian real space forms, we
obtain the whole families of the generalized golden shaped hypersurfaces
in Lorentz space forms.

1. Introduction

The Golden ratio has many applications in many parts of mathematics, for
example, natural sciences, music, art, philosophies and computational science
[8]. In the past few years, the Golden ratio has played a more and more
significant role in modern physical research and atomic physics [4]. The Golden
ratio also has interesting properties in topology of four-manifolds, in conformal
field theory, in mathematical probability theory, in Cantorian spacetime [7] and
in differential geometry.

The notion of golden structure on a manifold M was introduced in [2, 5] as
a (1, 1)-tensor field on M which satisfies the equation: J2 = J + I, where I is
the usual Kronecker tensor field of M . It attracts many authors, attentions to
focus on a class of well-known objects namely hypersurfaces in real space forms.
Recently, the golden shaped hypersurfaces in real space forms were defined and
the whole families of the golden shaped hypersurfaces were obtained in [3]. The
golden shaped hypersurfaces in Lorentz space forms were defined and the whole
families of the golden shaped hypersurfaces were obtained in [9]. In this paper,
we define the generalized golden shaped hypersurfaces in Lorentz space forms.
Based on the classification of proper semi-Riemannian hypersurfaces in semi-
Riemannian real space forms, we obtain the whole families of the generalized
golden shaped hypersurfaces in Lorentz space forms.
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2. Preliminaries

Let Rn
1 be an n-dimensional real vector space together with an inner product

given by

〈x, x〉 = −x2
1 +

n+1∑

i=2

x2
i ,

where x = (x1, . . . , xn) is the natural coordinate of Rn
1 .

Sn
1 (c) = {(x1, . . . , xn+1) ∈ R

n+1
1 | − x2

1 +

n+1∑

i=2

x2
i =

1

c
} (c > 0),

Hn
1 (c) = {(x1, . . . , xn+1) ∈ R

n+1
1 | −

2∑

i=1

x2
1 +

n+1∑

i=3

x2
i =

1

c
} (c < 0).

These spaces are complete and of constant curvature c. In general relativity, the
Lorentz manifolds Rn

1 , S
n
1 (c), H

n
1 (c) are respectably known as the Minkowski,

de Sitter and anti-de Sitter space, which is called Lorentz space form and is
denoted by Nn

1 (c).
Let M be a hypersurface in Lorentz space form Nn+1

1 (c). For a certain
normal vector field N , we put ǫ = 〈N,N〉. Let A = AN be the associated
shape operator and µ1, . . . , µn be the principal curvatures of M . If A can be
expressed by a real diagonal matrix with respect to an orthonormal frame at
each point of the semi-Riemannian manifold M , then A is said to be proper.
M is said to be proper if A is proper for a unit normal vector N at each point
of M .

Definition 1. A hypersurface M in Lorentz space form Nn+1
1 (c) is called

golden shaped hypersurface if A is a golden structure, i.e., A2 = A+ I.

In this paper, we give the definition of generalized golden-shaped hypersur-
faces:

Definition 2. A proper hypersurface M in Lorentz space form Nn+1
1 (c) is

called generalized golden shaped hypersurface if A is a generalized golden struc-
ture, i.e., A2 = aA+ bI, where a, b are constants satisfying a2 + 4b ≥ 0.

3. The classification of golden shaped hypersurfaces

Let M be a generalized golden shaped hypersurface. Then the principal

curvatures of M , µ1, . . . , µn, which are the eigenvalues of A, are λ1 = a+
√

a2+4b
2

and λ2 = a−
√

a2+4b
2

if a2 + 4b > 0. Especially, the principal curvatures of M ,

which are the eigenvalues of A, are λ1 = λ2 = a
2
if a2 + 4b = 0. According to

[6], the manifold M is an isoparametric hypersurface and based on [1], we get
the following theorems.
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Theorem 1. The only generalized golden shaped hypersurfaces in Minkowski

space R
n+1
1 are as follows:

Case 1: a2 + 4b = 0:
(1) If a 6= 0,

(i) Sn
1 (

a2

4
) = {x ∈ R

n+1
1 | −x2

1 +
∑n+1

i=2 x2
i = 4

a2 } with A = a
2
I and ε = 1.

(ii) Hn(−a2

4
) = {x ∈ R

n+1
1 | −x2

1 +
∑n+1

i=2
x2
i = − 4

a2 } with A = a
2
I and

ε = −1.

(2) If a = 0,

(i) R
n
1 = {x ∈ R

n+1
1 | xn+1 = 0} with A = O and ε = 1.

(ii) R
n = {x ∈ R

n+1
1 | x1 = 0} with A = O and ε = −1.

Case 2: a2 + 4b > 0:
(1) If b 6= 0,

(i) Sn
1 (λ

2
i ) = {x ∈ R

n+1
1 | −x2

1 +
∑n+1

i=2
x2
i = 1

λ2

i

} with A = λiI, i = 1, 2

and ε = 1.
(ii) Hn(−λ2

i ) = {x ∈ R
n+1
1 | −x2

1+
∑n+1

i=2
x2
i = − 1

λ2

i

} with A = λiI, i = 1, 2

and ε = −1.

(2) If b = 0,

(i) R
n
1 = {x ∈ R

n+1
1 | xn+1 = 0} with A = O and ε = 1.

(ii) R
n = {x ∈ R

n+1
1 | x1 = 0} with A = O and ε = −1.

(iii) Sn
1 (a

2) = {x ∈ R
n+1
1 | −x2

1 +
∑n+1

i=2
x2
i = 1

a2 } with A = aI and ε = 1.

(iv) Hn(−a2) = {x ∈ R
n+1
1 | −x2

1 +
∑n+1

i=2
x2
i = − 1

a2 } with A = aI and

ε = −1.
(v) R

r × Sn−r
1 (a2) = {x ∈ R

n+1
1 | −x2

1 +
∑n+1

i=r+2
x2
i = 1

a2 } with A =
Or ⊕ aIn−r and ε = 1.

(vi) R
r × Hn−r(−a2) = {x ∈ R

n+1
1 | −x2

1 +
∑n+1

i=r+2
x2
i = − 1

a2 } with A =
Or ⊕ aIn−r and ε = −1.

Proof. Case 1: Suppose a2 +4b = 0, λ1 = λ2 = a
2
, we distinguish the following

two cases:
(1) If a 6= 0, λ1 = λ2 6= 0, we get µ1 = µ2 = · · · = µn = a

2
and c = εa2

4
6= 0

for ε = ±1, then M is totally umbilical and is as follows:

(i) M = Sn
1 (

a2

4
) = {x ∈ R

n+1
1 | −x2

1 +
∑n+1

i=2
x2
i = 4

a2 } with A = a
2
I and

ε = 1.
(ii) M = Hn(−a2

4
) = {x ∈ R

n+1
1 | −x2

1+
∑n+1

i=2
x2
i = − 4

a2 } with A = a
2
I and

ε = −1.
(2) If a = 0, λ1 = λ2 = 0, we get µ1 = µ2 = · · · = µn = 0 and c = 0, then

M is as follows:
(i) M = R

n
1 = {x ∈ R

n+1
1 | xn+1 = 0} with A = O and ε = 1.

(ii) M = R
n = {x ∈ R

n+1
1 | x1 = 0} with A = O and ε = −1.

Case 2: Suppose a2 + 4b > 0:
(1) If b 6= 0, µ1 = µ2 = · · · = µn = λi 6= 0, we get c = ελ2

i 6= 0 for ε = ±1
and i = ±1, then M is as follows:
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(i) M = Sn
1 (λ

2
i ) = {x ∈ R

n+1
1 | −x2

1 +
∑n+1

i=2
x2
i = 1

λ2

i

} with A = λiI, i = 1, 2

and ε = 1.
(ii) M = Hn(−λ2

i ) = {x ∈ R
n+1
1 | −x2

1 +
∑n+1

i=2
x2
i = − 1

λ2

i

} with A = λiI,

i = 1, 2 and ε = −1.
(2) If b = 0, then a 6= 0 and λ1 = 0, λ2 = a or λ1 = a, λ2 = 0.
Suppose µ1 = µ2 = · · · = µn = 0, we get c = 0. Then we have
(i) M = R

n
1 = {x | xn+1 = 0} with A = O and ε = 1.

(ii) M = R
n = {x | x1 = 0} with A = O and ε = −1.

Suppose µ1 = µ2 = · · · = µn = a 6= 0, we get c = εa2 6= 0. Then we have

(iii) M = Sn
1 (a

2) = {x ∈ R
n+1
1 | −x2

1 +
∑n+1

i=2
x2
i = 1

a2 } with A = aI and
ε = 1.

(iv) M = Hn(−a2) = {x ∈ R
n+1
1 | −x2

1+
∑n+1

i=2
x2
i = − 1

a2 } with A = aI and
ε = −1.

Suppose for 1 < r < n, µ1 = · · · = µr = a 6= 0 and µr+1 = · · · = µn = 0,
then c1 = εa2 6= 0 and c2 = 0. Then we have

(v) R
r × Sn−r

1 (a2) = {x ∈ R
n+1
1 | −x2

1 +
∑n+1

i=r+2
x2
i = 1

a2 } with A =
Or ⊕ aIn−r and ε = 1.

(vi) R
r × Hn−r(−a2) = {x ∈ R

n+1
1 | −x2

1 +
∑n+1

i=r+2
x2
i = − 1

a2 } with A =
Or ⊕ aIn−r and ε = −1. �

Theorem 2. The only generalized golden shaped hypersurfaces in de Sitter

space Sn+1
1 are as follows:

Case 1: If a2 + 4b = 0:

(i) Sn
1 (1 +

a2

4
) = {x ∈ Sn+1

1 ⊂ R
n+2
1 | xn+2 = |a|

√

a2+4
} with A = a

2
I and

ε = 1.
(ii) If a = ±2,

R
n = {x ∈ Sn+1

1 ⊂ R
n+2
1 | x1 = xn+2 + t0}(t0 > 0) with A = ±I and

ε = −1.
(iii) If |a| > 2,

Hn(1 − a2

4
) = {x ∈ Sn+1

1 ⊂ R
n+2
1 | xn+2 = |a|

√

a2−4
} with A = a

2
I and

ε = −1.
(iv) If −2 < a < 2,

Sn(1 − a2

4
) = {x ∈ Sn+1

1 ⊂ R
n+2
1 | x1 = |a|

√
4−a2

} with A = a
2
I and

ε = −1.

Case 2: If a2 + 4b > 0:
(1) Suppose µ1 = µ2 = · · · = µn = λ1, there are the following four cases:

(i) Sn
1 (1 + λ2

1) = {x ∈ Sn+1
1 ⊂ R

n+2
1 | xn+2 = |λ1|√

1+λ2

1

} with A = λ1I and

ε = 1.
(ii) If (a, b) ∈ {(a, b) | a−b+1 = 0, a < −2} ∪ {(a, b) | a+b−1 = 0, a < 2},

R
n = {x ∈ Sn+1

1 ⊂ R
n+2
1 | x1 = xn+2 + t0}(t0 > 0) with A = ±I and

ε = −1.
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(iii) If (a, b) ∈ {(a, b) | a + b − 1 < 0,−2 ≤ a < 2} ∪ {(a, b) | a − b + 1 <
0, a+ b− 1 < 0, a < −2},

Sn(1 − λ2
1) = {x ∈ Sn+1

1 ⊂ R
n+2
1 | x1 = |λ1|√

1−λ2

1

} with A = λ1I and

ε = −1.
(iv) If (a, b) ∈ {(a, b) | a+ b− 1 > 0, a < 2} ∪ {(a, b) | a ≥ 2} ∪ {(a, b) | a <

−2, a− b+ 1 > 0},

Hn(1 − λ2
1) = {x ∈ Sn+1

1 ⊂ R
n+2
1 | xn+2 = |λ1|√

λ2

1
−1

} with A = λ1I and

ε = −1.

(2) Suppose µ1 = µ2 = · · · = µn = λ2,

(i) Sn
1 (1 + λ2

2) = {x ∈ Sn+1
1 ⊂ R

n+2
1 | xn+2 = |λ2|√

1+λ2

2

} with A = λ2I and

ε = 1.
(ii) If (a, b) ∈ {(a, b) | a−b+1 = 0, a > −2} ∪ {(a, b) | a+b−1 = 0, a > 2},

R
n = {x ∈ Sn+1

1 ⊂ R
n+2
1 | x1 = xn+2 + t0}(t0 > 0) with A = ±I and

ε = −1.
(iii) If (a, b) ∈ {(a, b) | a − b + 1 > 0,−2 < a ≤ 2} ∪ {(a, b) | a − b + 1 >

0, a+ b− 1 > 0, a > 2},

Sn(1 − λ2
2) = {x ∈ Sn+1

1 ⊂ R
n+2
1 | x1 = |λ2|√

1−λ2

2

} with A = λ2I and

ε = −1.
(iv) If (a, b) ∈ {(a, b) | a − b + 1 < 0, a > −2} ∪ {(a, b) | a ≤ −2} ∪

{(a, b) | a > 2, a+ b− 1 < 0},

Hn(1 − λ2
2) = {x ∈ Sn+1

1 ⊂ R
n+2
1 | xn+2 = |λ2|√

λ2

2
−1

} with A = λ2I and

ε = −1.

(3) Suppose µ1 = µ2 = · · · = µr = λ1, and µr+1 = · · · = µn = λ2, for

1 ≤ r ≤ n:

(i) If b = −1 and a > 2,

Sr(1 − λ2
2) × Hn−r(1 − λ2

1) = {x ∈ Sn+1
1 ⊂ R

n+2
1 |

∑2+r

i=2
x2
i =

1

1−λ2

2

,−x2
1 +

∑n+2

i=r+3
x2
i = 1

1−λ2

1

} with A = λ2Ir ⊕ λ1In−r and ε = −1.

(ii) If b = −1 and a < −2,

Sr(1 − λ2
1) × Hn−r(1 − λ2

2) = {x ∈ Sn+1
1 ⊂ R

n+2
1 |

∑2+r

i=2
x2
i =

1

1−λ2

1

,−x2
1 +

∑n+2

i=r+3 x
2
i = 1

1−λ2

2

} with A = λ1Ir ⊕ λ2In−r and ε = −1.

(iii) If b = 1,

Sr(1 + λ2
i ) × Sn−r

1 (1 + λ2
j ) = {x ∈ Sn+1

1 ⊂ R
n+2
1 |

∑2+r

i=2
x2
i =

1

1+λ2

i

,−x2
1 +

∑n+2

i=r+3
x2
i = 1

1+λ2

j

} with A = λiIr ⊕ λjIn−r, i, j = 1, 2,

i 6= j and ε = −1.

Proof. Case 1: If a2 + 4b = 0, λ1 = λ2 = a
2
, we distinguish the following four

cases:
(i) If ε = 1, we get c = 1+ a2

4
. Then M = Sn

1 (1+
a2

4
) = {x ∈ Sn+1

1 ⊂ R
n+2
1 |

xn+2 = |a|
√
a2+4

} with A = a
2
I.
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(ii) If ε = −1 and a = ±2, we get µ1 = µ2 = · · · = µn = ±1 and c = 0.
Then M = R

n = {x ∈ Sn+1
1 ⊂ R

n+2
1 | x1 = xn+2 + t0}(t0 > 0) with A = ±I.

(iii) If ε = −1 and |a| > 2, we get c = 1 − a2

4
< 0. Then we have M =

Hn(1− a2

4
) = {x ∈ Sn+1

1 ⊂ R
n+2
1 | xn+2 = |a|

√

a2−4
} with A = a

2
I.

(iv) If ε = −1 and −2 < a < 2, we get c = 1 − a2

4
> 0. Then we have

M = Sn(1− a2

4
) = {x ∈ Sn+1

1 ⊂ R
n+2
1 | x1 = |a|

√

4−a2
} with A = a

2
I.

Case 2: If a2 + 4b > 0:
(1) Suppose µ1 = µ2 = · · · = µn = λ1, there are the following four cases:
(i) If ε = 1, we get c = 1 + λ2

1 ≥ 1. Then we have M = Sn
1 (1 + λ2

1) = {x ∈

Sn+1
1 ⊂ R

n+2
1 | xn+2 = |λ1|√

1+λ2

1

} with A = λ1I.

(ii) If ε = −1 and (a, b) ∈ {(a, b) | a−b+1 = 0, a < −2} ∪ {(a, b) | a+b−1 =
0, a < 2}, we get c = 1 − λ2

1 = 0. Then we have M = R
n = {x ∈ Sn+1

1 ⊂
R

n+2
1 | x1 = xn+2 + t0}(t0 > 0) with A = ±I.
(iii) If ε = −1 and (a, b) ∈ {(a, b) | a+ b − 1 < 0,−2 ≤ a < 2} ∪ {(a, b) | a−

b + 1 < 0, a + b − 1 < 0, a < −2}, we get 0 < c = 1 − λ2
1 ≤ 1. Then we have

M = Sn(1− λ2
1) = {x ∈ Sn+1

1 ⊂ R
n+2
1 | x1 = |λ1|√

1−λ2

1

} with A = λ1I.

(iv) If ε = −1 and (a, b) ∈ {(a, b) | a + b − 1 > 0, a < 2} ∪ {(a, b) | a ≥ 2}
∪ {(a, b) | a < −2, a − b + 1 > 0}, we get c = 1 − λ2

1 < 0. Then we have

M = Hn(1− λ2
1) = {x ∈ Sn+1

1 ⊂ R
n+2
1 | xn+2 = |λ1|√

λ2

1
−1

} with A = λ1I.

(2) Suppose µ1 = µ2 = · · · = µn = λ2,
(i) If ε = 1, we get c = 1 + λ2

2 ≥ 1. Then we have M = Sn
1 (1 + λ2

2) = {x ∈

Sn+1
1 ⊂ R

n+2
1 | xn+2 = |λ2|√

1+λ2

2

} with A = λ2I.

(ii) If ε = −1 and (a, b) ∈ {(a, b) | a−b+1 = 0, a > −2} ∪ {(a, b) | a+b−1 =
0, a > 2}, we get c = 1 − λ2

2 = 0. Then we have M = R
n = {x ∈ Sn+1

1 ⊂
R

n+2
1 | x1 = xn+2 + t0}(t0 > 0) with A = ±I.
(iii) If ε = −1 and (a, b) ∈ {(a, b) | a− b + 1 > 0,−2 < a ≤ 2} ∪ {(a, b) | a−

b + 1 > 0, a + b − 1 > 0, a > 2}, we get 0 < c = 1 − λ2
2 ≤ 1. Then we have

M = Sn(1− λ2
2) = {x ∈ Sn+1

1 ⊂ R
n+2
1 | x1 = |λ2|√

1−λ2

2

} with A = λ2I.

(iv) If ε = −1 and (a, b) ∈ {(a, b) | a− b+ 1 < 0, a > −2} ∪ {(a, b) | a ≤ −2}
∪ {(a, b) | a > 2, a + b − 1 < 0}, we get c = 1 − λ2

2 < 0. Then we have

M = Hn(1− λ2
2) = {x ∈ Sn+1

1 ⊂ R
n+2
1 | xn+2 = |λ2|√

λ2

2
−1

} with A = λ2I.

(3) Suppose µ1 = µ2 = · · · = µr = λ1, and µr+1 = · · · = µn = λ2, for
1 ≤ r ≤ n:

(i) If ε = −1, b = −1 and a > 2, we get λ1λ2 = 1, c1 = 1 − λ2
1 > 0 and

c2 = 1−λ2
2 < 0. Then we have M = Sr(1−λ2

2)×Hn−r(1−λ2
1) = {x ∈ Sn+1

1 ⊂

R
n+2
1 |

∑2+r

i=2
x2
i = 1

1−λ2

2

,−x2
1 +

∑n+2

i=r+3
x2
i = 1

1−λ2

1

} with A = λ2Ir ⊕ λ1In−r .
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(ii) If ε = −1, b = −1 and a < −2, we get λ1λ2 = 1, c1 = 1 − λ2
1 < 0 and

c2 = 1−λ2
2 > 0. Then we have M = Sr(1−λ2

1)×Hn−r(1−λ2
2) = {x ∈ Sn+1

1 ⊂

R
n+2
1 |

∑2+r

i=2
x2
i = 1

1−λ2

1

,−x2
1 +

∑n+2

i=r+3
x2
i = 1

1−λ2

2

} with A = λ1Ir ⊕ λ2In−r .

(iii) If ε = 1 and b = 1, we get λ1λ2 = 1, ci = 1 + λ2
i > 0 for i = 1, 2. Then

we have M = Sr(1 + λ2
i ) × Sn−r

1 (1 + λ2
j ) = {x ∈ Sn+1

1 ⊂ R
n+2
1 |

∑2+r

i=2
x2
i =

1

1+λ2

i

,−x2
1 +

∑n+2

i=r+3
x2
i = 1

1+λ2

j

} with A = λiIr ⊕ λjIn−r, i, j = 1, 2 and

i 6= j. �

Theorem 3. The only generalized golden-shaped hypersurfaces in anti-de Sitter

space Hn+1
1 (−1) are as follows:

Case 1: If a2 + 4b = 0:

(i) Hn(−1 − a2

4
) = {x ∈ Hn+1

1 (−1) ⊂ R
n+2
2 | x1 = |a|

√

a2+4
} with A = a

2

and ε = −1.
(ii) If a = ±2, Rn

1 = {x ∈ Hn+1
1 (−1) ⊂ R

n+2
2 | x1 = xn+2 + t0}(t0 > 0)

with A = ±I and ε = 1.
(iii) If a ∈ {|a| > 2}, Sn

1 (
a2

4
− 1) = {x ∈ Hn+1

1 (−1) ⊂ R
n+2
2 | x1 = |a|

√
a2−4

}

with A = a
2
I and ε = 1.

(iv) If a ∈ {−2 < a < 2}, Hn
1 (

a2

4
− 1) = {x ∈ Sn+1

1 ⊂ R
n+2
1 | xn+2 =

|a|
√

4−a2
} with A = a

2
I and ε = 1.

Case 2: If a2 + 4b > 0:
(i) Suppose µ1 = µ2 = · · · = µn = λ1, there are the following four cases:

(1) Hn(−1− λ2
1) = {x ∈ Hn+1

1 (−1) ⊂ R
n+2
2 | x1 = |λ1|√

1+λ2

1

} with A = λ1I

and ε = −1.
(2) If (a, b) ∈ {(a, b) | a−b+1 = 0, a < −2} ∪ {(a, b) | a+b−1 = 0, a < 2},

R
n
1 = {x ∈ Hn+1

1 (−1) ⊂ R
n+2
2 | x1 = xn+2 + t0}(t0 > 0) with A = ±I

and ε = 1.
(3) If (a, b) ∈ {(a, b) | a + b − 1 < 0,−2 ≤ a < 2} ∪ {(a, b) | a − b + 1 <

0, a + b − 1 < 0, a < −2}, Hn
1 (λ

2
1 − 1) = {x ∈ Hn+1

1 (−1) ⊂ R
n+2
2 |

xn+2 = |λ1|√
1−λ2

1

} with A = λ1I and ε = 1.

(4) If (a, b) ∈ {(a, b) | a+ b− 1 > 0, a < 2} ∪ {(a, b) | a ≥ 2} ∪ {(a, b) | a <

−2, a−b+1 > 0}, Sn
1 (λ

2
1−1) = {x ∈ Hn+1

1 (−1) ⊂ R
n+2
2 | x1 = |λ1|√

λ2

1
−1

}

with A = λ1I and ε = 1.

(ii) Suppose µ1 = µ2 = · · · = µn = λ2, there are the following four cases:

(1) Hn(−1− λ2
2) = {x ∈ Hn+1

1 (−1) ⊂ R
n+2
2 | x1 = |λ2|√

1+λ2

2

} with A = λ2I

and ε = −1.
(2) If (a, b) ∈ {(a, b) | a−b+1 = 0, a > −2} ∪ {(a, b) | a+b−1 = 0, a > 2},

R
n
1 = {x ∈ Hn+1

1 (−1) ⊂ R
n+2
2 | x1 = xn+2 + t0}(t0 > 0) with A = ±I

and ε = 1.
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(3) If (a, b) ∈ {(a, b) | a − b + 1 > 0,−2 < a ≤ 2} ∪ {(a, b) | a − b + 1 >
0, a+b−1 > 0, a > 2}, Hn

1 (λ
2
2−1) = {x ∈ Hn+1

1 (−1) ⊂ R
n+2
2 | xn+2 =

|λ2|√
1−λ2

2

} with A = λ2I and ε = 1.

(4) If (a, b) ∈ {(a, b) | a − b + 1 < 0, a > −2} ∪ {(a, b) | a ≤ −2} ∪
{(a, b) | a > 2, a+ b − 1 < 0}, Hn

1 (λ
2
2 − 1) = {x ∈ Hn+1

1 (−1) ⊂ R
n+2
2 |

x1 = |λ2|√
λ2

2
−1

} with A = λ2I and ε = 1.

(iii) Suppose µ1 = µ2 = · · · = µr = λ1, and µr+1 = · · · = µn = λ2, for

1 ≤ r ≤ n:

(1) If b = −1 and a > 2, Sr
1(λ

2
1 − 1)×Hn−r(λ2

2 − 1) = {x ∈ Hn+1
1 (−1) ⊂

R
n+2
2 | −x2

1 +
∑2+r

i=3
x2
i = 1

λ2

1
−1

,−x2
2 +

∑n+2

i=r+3
x2
i = 1

λ2

2
−1

} with A =

λ1Ir ⊕ λ2In−r and ε = 1.
(2) If b = −1 and a < −2, Sr

1(λ
2
2− 1)×Hn−r(λ2

1− 1) = {x ∈ Hn+1
1 (−1) ⊂

R
n+2
2 | −x2

1 +
∑2+r

i=3
x2
i = 1

λ2

2
−1

,−x2
2 +

∑n+2

i=r+3
x2
i = 1

λ2

1
−1

} with A =

λ2Ir ⊕ λ1In−r and ε = 1.
(3) If b = 1, Hr(−1 − λ2

i ) ×Hn−r
1 (−1 − λ2

j) = {x ∈ Hn+1
1 (−1) ⊂ R

n+2
2 |

−x2
1 +

∑2+r

i=3
x2
i = 1

−1−λ2

i

,−x2
2 +

∑n+2

i=r+3
x2
i = 1

−1−λ2

j

} with A = λiIr ⊕

λjIn−r)), i, j = 1, 2, i 6= j and ε = −1.

Proof. Case 1: If a2 + 4b = 0, then λ1 = λ2 = a
2
.

(i) If ε = −1, we get c = −a2

4
− 1 < 0. Then M = Hn(−1 − a2

4
) = {x ∈

Hn+1
1 (−1) ⊂ Rn+2

2 | x1 = |a|
√

a2+4
} with A = a

2
I.

(ii) If ε = 1 and a = ±2, we get c = −1 + a2

4
= 0. Then M = R

n
1 = {x ∈

Hn+1
1 (−1) ⊂ R

n+2
2 | x1 = xn+2 + t0}(t0 > 0) with A = ±I.

(iii) If ε = 1 and |a| > 2, we get c = −1 + a2

4
> 0. Then M = Sn

1 (
a2

4
− 1) =

{x ∈ Hn+1
1 (−1) ⊂ R

n+2
2 | x1 = |a|

√
a2−4

} with A = a
2
I.

(iv) If ε = 1 and −2 < a < 2, we get c = −1 + a2

4
< 0. Then M =

Hn
1 (

a2

4
− 1) = {x ∈ Sn+1

1 ⊂ R
n+2
1 | xn+2 = |a|

√

4−a2
} with A = a

2
I.

Case 2: If a2 + 4b > 0:
(i) Suppose µ1 = µ2 = · · · = µn = λ1, there are the following four cases:
(1) If ε = −1, we get c = −λ2

1 − 1 < 0. Then M = Hn(−1 − λ2
1) = {x ∈

Hn+1
1 (−1) ⊂ R

n+2
2 | x1 = |λ1|√

1+λ2

1

} with A = λ1I.

(2) If ε = 1 and (a, b) ∈ {(a, b) | a− b+1 = 0, a < −2} ∪ {(a, b) | a+ b− 1 =
0, a < 2}, we get c = λ2

1 − 1 = 0. Then M = R
n
1 = {x ∈ Hn+1

1 (−1) ⊂ R
n+2
2 |

x1 = xn+2 + t0}(t0 > 0) with A = ±I.
(3) If ε = 1 and (a, b) ∈ {(a, b) | a + b − 1 < 0,−2 ≤ a < 2} ∪ {(a, b) | a −

b + 1 < 0, a + b − 1 < 0, a < −2}, we get −1 ≤ c = λ2
1 − 1 < 0. Then

M = Hn
1 (λ

2
1 − 1) = {x ∈ Hn+1

1 (−1) ⊂ R
n+2
2 | xn+2 = |λ1|√

1−λ2

1

} with A = λ1I.
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(4) If ε = 1 and (a, b) ∈ {(a, b) | a + b − 1 > 0, a < 2} ∪ {(a, b) | a ≥ 2} ∪
{(a, b) | a < −2, a− b+1 > 0}, we get c = λ2

1 − 1 > 0. Then M = Sn
1 (λ

2
1 − 1) =

{x ∈ Hn+1
1 (−1) ⊂ R

n+2
2 | x1 = |λ1|√

λ2

1
−1

} with A = λ1I.

(ii) Suppose µ1 = µ2 = · · · = µn = λ2, there are the following four cases:
(1) If ε = −1, we get c = −λ2

2 − 1 < 0. Then M = Hn(−1 − λ2
2) = {x ∈

Hn+1
1 (−1) ⊂ R

n+2
2 | x1 = |λ2|√

1+λ2

2

} with A = λ2I.

(2) If ε = 1 and (a, b) ∈ {(a, b) | a− b+1 = 0, a > −2} ∪ {(a, b) | a+ b− 1 =
0, a > 2}, we get c = λ2

1 − 1 = 0. Then M = R
n
1 = {x ∈ Hn+1

1 (−1) ⊂ R
n+2
2 |

x1 = xn+2 + t0}(t0 > 0) with A = ±I.
(3) If ε = 1 and (a, b) ∈ {(a, b) | a−b+1 > 0,−2 < a ≤ 2} ∪ {(a, b) | a−b+1 >

0, a+ b− 1 > 0, a > 2}, we get −1 ≤ c = λ2
1 − 1 < 0. M = Hn

1 (λ
2
2 − 1) = {x ∈

Hn+1
1 (−1) ⊂ R

n+2
2 | xn+2 = |λ2|√

1−λ2

2

} with A = λ2I.

(4) If ε = 1 and (a, b) ∈ {(a, b) | a− b+ 1 < 0, a > −2} ∪ {(a, b) | a ≤ −2} ∪
{(a, b) | a > 2, a+ b− 1 < 0}, we get c = λ2

1 − 1 > 0. Then M = Hn
1 (λ

2
2 − 1) =

{x ∈ Hn+1
1 (−1) ⊂ R

n+2
2 | x1 = |λ2|√

λ2

2
−1

} with A = λ2I.

(iii) Suppose µ1 = µ2 = · · · = µr = λ1, and µr+1 = · · · = µn = λ2, for
1 ≤ r ≤ n:

(1) If ε = 1 and b = −1 and a > 2, we get λ1λ2 = 1 and c1 = λ2
1 − 1 > 0

and c2 = λ2
2 − 1 < 0. Then we have M = Sr

1(λ
2
1 − 1) ×Hn−r(λ2

2 − 1) = {x ∈

Hn+1
1 (−1) ⊂ R

n+2
2 | −x2

1 +
∑2+r

i=3
x2
i = 1

λ2

1
−1

,−x2
2 +

∑n+2

i=r+3
x2
i = 1

λ2

2
−1

} with

A = λ1Ir ⊕ λ2In−r.
(2) If ε = 1 and b = −1 and a < −2, we get λ1λ2 = 1 and c1 = λ2

1 − 1 < 0
and c2 = λ2

2 − 1 > 0. Then we have M = Sr
1(λ

2
2 − 1) ×Hn−r(λ2

1 − 1) = {x ∈

Hn+1
1 (−1) ⊂ R

n+2
2 | −x2

1 +
∑2+r

i=3
x2
i = 1

λ2

2
−1

,−x2
2 +

∑n+2

i=r+3
x2
i = 1

λ2

1
−1

} with

A = λ2Ir ⊕ λ1In−r.
(3) If ε = −1 and b = −1 , we get λ1λ2 = 1 and ci = −1 − λ2

i < 0
for i, j = 1, 2. Then we have M = Hr(−1 − λ2

i ) × Hn−r
1 (−1 − λ2

j ) = {x ∈

Hn+1
1 (−1) ⊂ R

n+2
2 | −x2

1 +
∑2+r

i=3
x2
i = 1

−1−λ2

i

,−x2
2 +

∑n+2

i=r+3
x2
i = 1

−1−λ2

j

}

with A = λiIr ⊕ λjIn−r, i, j = 1, 2 and i 6= j. �

Remark 1. Theorem 1, Theorem 2 and Theorem 3 are the generalization of the
corresponding results in [9] respectively. That is , when a = 1 and b = 1, these
theorems are the same as theorems in [9].
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