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EXPONENTIAL STABILITY OF INFINITE DIMENSIONAL
LINEAR SYSTEMS

CHANG EON SHIN

ABSTRACT. In this paper, we show that if A is a differential subalgebra of
Banach algebras B(¢"), 1 < r < oo, then solutions of the infinite dimen-
sional linear system associated with a matrix in .4 have its p-exponential
stability being equivalent to each other for different 1 < p < oo.

1. Introduction

In this paper, we consider the following linear system associated with an
infinite-dimensional matrix A,

(1.1) %T(t) =AT(t) and T(0)=1,

where I is the identity matrix. The above linear system (1.1) is said to be
p-exponentially stable if there exist constants D and « > 0 such that

(1.2) |T ()|l eery < De™ " forall t>0,

where /P, 1 < p < o0, is the space of all p-summable sequences with its norm
denoted by || - ||, and B(¢?) is the space of bounded linear operators on ¢ with
its norm denoted by || - |[g@r) ([1]). In finite-dimensional setting, the linear
system (1.1) has the p-exponential stability with p = 2 if and only if all eigen-
values of the matrix A have negative real parts. The above characterization of
p-exponential stability plays a crucial role to solve the Lyapunov equation

(1.3) ATP+PA+Q =0,

where @) is a positive definite matrix and all eigenvalues of the matrix A have
negative real parts ([5, 8]). In infinite-dimensional setting, it was shown in
[7] and [8] that the p-exponential stability with p = 2 implies the existence
of a unique solution of Lyapunov equation, provided that the matrix A has
additional off-diagonal decay.
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Let 0 <60 < 1 and B be a Banach algebra of matrices. We say that a matrix
algebra A with norm || - || 4 is a differential subalgebra of the Banach algebra B
with order 0 if there exist positive constants C and C’ such that

1-6 1-6
(1.4) ||AB||Asc||A||A||B||A(('A”B) +(”B|B) )

(| All.a | B]].a
and
(1.5) [Alls < C'[|All 4

for all A, B € A. The aim of this paper is to show that if A is a differential
subalgebra of Banach algebras B(¢"), 1 < r < oo, with order § € [0,1) and if
the linear system (1.1) is p-exponentially stable for some 1 < p < oo, then the
linear system (1.1) is g-exponentailly stable for any 1 < ¢ < co.

The paper is organized as follows. In Section 2, we introduce some differen-
tial subalgebras of B(¢P), including Groéchenig-Schur class, Gohberg-Baskakov-
Sjostrand class, and Beurling class. In Section 3, we show that if an infinite
matrix A satisfies (1.4) and (1.5), then p-exponential stability of the associated
linear system (1.1) are equivalent to each other for different 1 < p < oo.

In this paper, the capital C' is an absolute constant which may be different
at each occurrence.

2. Differentiable matrix algebras

In this section, we introduce some matrix algebras which are differential
subalgebras of B({"), 1 <r < oo.
A weight u in this paper is a matrix on Z¢ x Z% with

(2.1) 1 <w(i,j) =u(j,i) < oo
and
(2.2) D(u) := 'Seng u(i,1) < oo.

For a matrix a and a weight u, denote their entry multiplication by
au := ((au)(i,5))i jeze = (ali, ))u(i, j))i jeza,
and entry reciprocal by
u™t = ((u(i, )i jeza-

Denote by | - |« the infinite norm on the d-dimensional Euclidean space R?. In
the next definition, we introduce some matrix algebras.

Definition 2.1. Let 1 < p < oo and u be a weight. The Grochenig-Schur
class

(2.3) Apu i =1{A : ||A]4,. < oo}
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contains all matrices A := (a(i,J)); jeze with

i,J€
(24) |4lL,.. == max { sup [[((@u) i 1)) ezl sup |((020) (5, 5))iezs ) <o
i€Z4 jezZd

the Gohberg-Baskakov-Sjostrand class

(2.5) Cpu:={A : || A]c,. < oo}

includes matrices A with its norm

2.6 Ale. . == H( i) )

(26) 4l = | s N ),

being finite; and the Beurling class is the set

(2.7) By :={A : ||A]5,. < oo},

where

(2.8) lAls,., = sw  aw@al) ||
li—jloc >kloo keztllp

From the above definition, we have

(2.9) Bpuw CCpu CApy
and
(2.10) 1Al 4,.. < Alle,.. < 1AllB,. A€ Bpu.

The reader may refer to [2, 3, 4, 6, 10, 11, 12, 13] for historical remarks and
more properties of the above three classes of matrices.

For 1 < p < o0, a weight u is called a p-submultiplicative weight if there
exists another weight v satisfying

(2.11) u(i,j) < u(i,k)v(k, ) +v(i,k)u(k,j) for all 4,75,k e Z%,
and one of the following three conditions:

(2.12) iseuZ% H((vu*l)(i,j))jezdHp/(pfl)+J_S;1Z% H((Uuil)(i’j))iGZdHp/(pfl) < 00

for the Grochenig-Schur class A ;

(213) ||( -Eugk(vuil)(i“j))kezdHp/(p—l) < o0
for the Gohberg-Baskakov-Sjostrand class Cp .,; and

2.14 (i, j <
(214 H(ufﬂs;?gmm(w 30 ezl - < o2

for the Beurling class B, ,. For a p-submultiplicative weight u, we call the
weight v in (2.11) a companion weight of w.

Lemma 2.2. Let 1 < p < oo, u be a weight, and Fp ., be one of three classes
Apw, Cpu and By . Then the following statements hold.
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(i) If ||u71||}'p/(p71),u0 < oo for the trivial weight ug having every entry to
be 1, then

(2.15) 1AllBery < w17, oy 1Al 7.0 1 <7 < 00

(ii) If u is a p-submultiplicative weight and v is a companion weight of u,
then there exists a positive constant C such that for all A, B € Fp 4,

(2.16) 1AB|7,. < C(lAll7,.|Bll7. + [1Al7. Bl 7,.),

where AB is the matriz multiplication.

Proof. (i) It is well-known that
||A||B<er><max(supz|a i )lsup 3 la(ig)l), 1< 7 < oo
zEZ’i ]eZd

Since for any A € Ay,

ANy < 1Al < a7y gm0 1Al 4,

this together with (2.10) proves the conclusion (i).

(ii) We prove the conclusion for the Gohberg-Baskakov-Sjostrand class
only. The reader may follow similar argument to prove the conclusion (ii) for the
Grochenig-Schur class and for the Beurling class. Take A := (a(i, j)); jezd, B :=
(b(,7))i,jeza in Cpu, and write AB := (c(i,7)); jeza. Note from (2.11) that

(cu)(i, )] = | Y ali, O)b(L, j)u(, j)]

Lezd
(2.17) < [(au) (@, 0| (0v) (€, )] + Y [(av) @ O (bu) (L, )]
Lezd Lezd

We write a(k) = sup,cza [(aw)(j + k, j)|. Since
> sup l(au) (G + ko g+ K)P = Y alk—K)” = || Al
reza I€L kezd

for k' € Z%, we have that

> sup (3 I(aw)G 0ot 5)1)’

kezd IR D pega
<Z sup(Z|auz€|pbv ,j) (Z|bv€])
kezd IR " pega tezd

<IBIEE S sw (3 aw)Gi+ k,OF1o)(E )

kezd €LY " pega

<IBIE > X0 (s NG+ ko) (s [(bo)(t,5)])
kezd keza TITH t=j=FK

< |lAl, IBIZ, -
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Similarly,

S swp (3 @) ollbu)e ) < AIE, IBIE, .

kezd "TI=F Y ycga

The above two estimates together with (2.17) yield

o 1/p
sup |(CU)(W)|p) <2(IAlle,..|1Blley.. + 1 Aller..l1Blle,..)-
kezd Ik

For 1 < p < o0, 7 > 0, a p-submultiplicative weight v and a companion
weight v of u, we define A(7) and §,,/(,—1)(7) as follows:

(2.18) A(r) = sup Z v(i,7) + sup Z v(i,7),

c7d
JELY icpd with
li—=jloo <T [i—jloo <7

(p—1)/p

Qp/(p—n(T):_sup( > ((vufl)(i,j))p/@fl))

d
€L jezd with

[i—dloo >7

(p—1)/p

(2.19) +swp (D (a0 )
JEZA iezd with
[i—jloo>T

for the Grochenig-Schur class A u;

(2.20) Alr)= Y sup v(i,j),

ko <7 i7I=R

e = (X (s ) )

koo >r TI=H
for the Gohberg-Baskakov-Sjostrand class Cp ,,; and
(2.22) A(T) = Z sup v(i,5),

|kloo <T [kloo <|i—jloo <T

e _1)\ (p—1)/p
(2.23)  Qpp-1)(1) = ( Z ( sup (vu 1)(2,]))p/(p ))
for the Beurling class B, .

Polynomial weights ((1 + [i — j|00)°‘)i7je
(exp(Dl]i — j|go))ijezd are p-submultiplicative and they satisfy (2.24) ([11],
[12], [13]), while subpolynomial weights (exp (D(In(1 + |i — j|°0))6))i,jezd are
1-submultiplicative but they do not satisfy (2.24) ([9]), where 1 < p < oo,
a>d/p, D>0andé € (0,1).

In the following theorem, a sufficient condition is given for a subalgebra to
be a differential subalgebra.

4a and subexponential weights
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Proposition 2.3. Let 1 < p < 0o and Fp ., be one of three classes Ap.w, Cpu
and By .. If u is a p-submultiplicative weight with companion weight v, and
there exist D >0 and 0 < 6 < 1 such that

(2.24) inf [A(T) +1- Qpp-1y(7)] < D forallt > 1,

then Fp., is a differential subalgebra of B(¢"), 1 < r < oo, with order 0, that
is, there exists C' > 0 such that for any A, B € Fp 4

IAlsey\ ™" [ 1Bllsey '™
(2.25) [[AB||7,.<ClAll7, Bz | | 75— | T :
1Al 7,. 1Bl 7, .,

Proof. We prove the inequality (2.25) when F, , is the Gohberg-Baskakov-
Sjostrand class, so that A(7) and €,/,—1)(7) are given by (2.20) and (2.21),
respectively. We may follow similar argument to prove the conclusion for the
Grochenig-Schur class and the Beurling class, and we leave the details for the
interested reader.

Let 1 <p<o00,A,B€Cpy, where A= (a(i,5)); jeze and B = (b(i, J)); jeza-
Since for any i, j € Z¢,

b(i, )| < 1 Bllsery

we have that for any 7 > 0

IBlle,., = Y sup [(bv)(i, )]

kezd i—j=k

IBlls@ry >, sup o(i, )+ > sup |(bu)(i,j)l(va ") (i, )

k<7 TI=F Koo >7 " TI=F
< ||Bllsen)A(T) + 1Bl p/(p—1) (7)-
Since by Lemma 2.2(i) there exists C; > 1 such that
[H|ery < ChllHllc,..,
for all H € Cp, ,,, we obtain from (2.16) and (2.24) that
[ABlc,.. <C(Alle,.lBlc., + 1 Ale..IBlle,..)

< C (Il Alle,... (1Bl A() + CillBlle, . /o1 (7))

+ 1Bllc, . (1Al seery A(T) + ClIIAllcp,qu/@—l)(T)))

IN

9 IBllc,.. \'
< CCLDIAlle,.1Bllser | gy e

+ CCID| Al | Blle (lﬂﬂif
! R A

Al sery \ ' IBlsery\ ' ~°
ZCCfD|A|cp,u|B||cp,u((WC() + Wc() :
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This completes the proof. (I

3. Exponential stability
The following is the main theorem of this paper.

Theorem 3.1. Let 0 < § < 1 and A be a Banach algebra with norm || - || 4.
Suppose that A is a differential subalgebra of B({"), 1 < r < oo, with order 6.
If the linear system (1.1) associated with A € A is p-exponentially stable for
some 1 < p < oo, then it is g-exponentially stable for any 1 < q < oo.

Proof. Let 0 <0 <1, A€ Aand 1 < p < oo. The solution of the system (1.1)
is given by

o0

exp(tA) Z

n

Then exp(tA) € A as

A
lexp(tA)]| 4 ZH H HA <oo, teR

By p-exponential stability, there exist constants M and a > 0 such that

(3.1) | exp(tA)||pry < Me=**  for any t > 0.
Letting A = B in (1.4) gives
(3.2) | A2||4 < 20||A||1+‘9||A||B(€p) for all A € A.

Let t > 1 and N be the nonnegative integer such that t/2% € [1,2), which
implies that

(3.3) logot — 1 < N < log,t.

We put B = exp(55 A). Observing from (3.1) that for 3 > 0 and a nonnegative
integer k,
1B < MPemot? 8,
it follows from (3.2) that
N
IB* [la < 2C1 B> 15°1B> lseny

N-2 (140)2 N-2 (14+0)(1—6 N-—1
OB G B e B

||B(€P)

2N1 2N1

HB(ZP)

IN A

146 (1+0)N"1(1-0) (1+0)N"2(1—0
< OMIBIGT 1B TOIBA GG

N-—-1 1 9
B2

< (20)N0(1+9)NM(1+9)N*1(1—9)6—at2*N(1+9)N*1(1—9) «

v M(1+9)N72(176)efat27N+1(1+0)N72(176) . .M(170)efat2*1(176)
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(QC)NCV(H-B)NMO—@)((1+9)N71+(1+9)N72+‘~+1) ‘..

(3.4) o emot(1=0) (ST BT R )

)

where sup,c(, o) || exp(sA)| 4 = C. Observing from (3.3) that

a+o)N-t  a4e)N—2 110\
eiat(l*e)( CI LY +'“+%) :eiateat(%)
146
2

_ logo _ logg (14-0)
<e ateat(t/Q) < e—at 20t

and

M(1_9)((1+9)N*1+(1+9)N*2+~‘+1) < SR+ e%tlogﬂlw In M

Combining the above two estimates with (3.4), we obtain that for any ¢ > 1

1-6

| exp(tA)[|a <exp (—at + tloe2(140) (24 4 InM +1nC)+

(3.5) + (In2C)(logy t)).

Since max;eo 1) || exp(tA)[|a < el4l4 is bounded, from (3.5) we have that for
any 0 < o/ < «, there exists a positive constant M’ satisfying

(3.6) || exp(tA)||a < M'e .
Combining (1.5) and (3.6) yields that
(3.7) | exp(tA)]| gy < C'M'e="t for all t >0,

where 1 < ¢ < oo. This proves that the linear system (1.1) is g-exponentially
stable. O

Let 1 < p < oco. If a Banach algebra A is one of three classes Ay, Cpu
and By, and u is a p-submultiplicative weight satisfying (2.24), then (1.5) is
satisfied by Lemma 2.2, and A is a differential subalgebra of B(¢"), 1 < r < oo,
by Proposition 2.3. Hence we have the following corollary.

Corollary 3.2. Let 1 <p < oo, A be one of three classes Ap w,Cp and Bp .,
and u be a p-submultiplicative weight matriz satisfying (2.24) and A € A. Then
q-exponential stability of the linear system (1.1) associated with A for different
1 < g < o is equivalent to each other.

References

(1] R. F. Curtain and H. J. Zwart, An Introduction to Infinite Dimensional Linear Systems
Theorey, Springer-Verlag, New York, 1995.

[2] K. Grochenig, Wiener’s lemma: theme and variations, an introduction to spectral in-
variance and its applications, In Four Short Courses on Harmonic Analysis: Wavelets,
Frames, Time-Frequency Methods, and Applications to Signal and Image Analysis,
edited by P. Massopust and B. Forster, Birkhauser, Boston 2010.

[3] K. Grochenig and A. Klotz, Noncommutative approzimation: inverse-closed subalgebras
and off-diagonal decay of matrices, Constr. Approx. 32 (2010), no. 3, 429-466.



EXPONENTIAL STABILITY OF INFINITE DIMENSIONAL LINEAR SYSTEMS 611

[4] K. Grochenig and M. Leinert, Symmetry and inverse-closedness of matriz algebras and
functional calculus for infinite matrices, Trans. Amer. Math. Soc. 358 (2006), 2695—
2711.

[5] M. Hirsch and S. Smale, Differential Equations, Dynamical Systems, and Linear Alge-
bra, Academic Press, San Diego, 1974.

[6] I. Krishtal, Wiener’s lemma: pictures at exhibition, Rev. Un. Mat. Argentina 52 (2011),
no. 2, 61-79.

[7] N. Motee and A. Jadbabie, Optimal control of spatially distributed systems, IEEE Trans.
Automat. Control 53 (2008), no. 7, 1616-1629.

[8] N. Motee and Q. Sun, Sparsity measures for spatially decaying systems, arXiv:1402.4148.

[9] C. E. Shin, Infinite matrices with subpolynomial off-diagonal decay, in preparation.

[10] C. E. Shin and Q. Sun, Wiener’s lemma: localization and various approaches, Appl.
Math. J. Chinese Univ. Ser. B 28 (2013), no. 4, 465-484.

[11] Q. Sun, Wiener’s lemma for infinite matrices with polynomial off-diagonal decay, C. R.
Math. Acad. Sci. Paris 340 (2005), no. 8, 567-570.

, Wiener’s lemma for infinite matrices, Trans. Amer. Math. Soc. 359 (2007),

no. 7, 3099-3123.

, Wiener’s lemma for infinite matrices II, Constr. Approx. 34 (2011), no. 2,

209-235.

CHANG EON SHIN

DEPARTMENT OF MATHEMATICS
SOGANG UNIVERSITY

SEOUL 121-742, KOREA

E-mail address: shinc@sogang.ac.kr



