
Commun. Korean Math. Soc. 31 (2016), No. 3, pp. 603–611
http://dx.doi.org/10.4134/CKMS.c150221
pISSN: 1225-1763 / eISSN: 2234-3024

EXPONENTIAL STABILITY OF INFINITE DIMENSIONAL

LINEAR SYSTEMS

Chang Eon Shin

Abstract. In this paper, we show that if A is a differential subalgebra of
Banach algebras B(ℓr), 1 ≤ r ≤ ∞, then solutions of the infinite dimen-
sional linear system associated with a matrix in A have its p-exponential
stability being equivalent to each other for different 1 ≤ p ≤ ∞.

1. Introduction

In this paper, we consider the following linear system associated with an
infinite-dimensional matrix A,

(1.1)
d

dt
T (t) = AT (t) and T (0) = I,

where I is the identity matrix. The above linear system (1.1) is said to be
p-exponentially stable if there exist constants D and α > 0 such that

(1.2) ‖T (t)‖B(ℓp) ≤ De−αt for all t ≥ 0,

where ℓp, 1 ≤ p ≤ ∞, is the space of all p-summable sequences with its norm
denoted by ‖ ·‖p, and B(ℓp) is the space of bounded linear operators on ℓp with
its norm denoted by ‖ · ‖B(ℓp) ([1]). In finite-dimensional setting, the linear
system (1.1) has the p-exponential stability with p = 2 if and only if all eigen-
values of the matrix A have negative real parts. The above characterization of
p-exponential stability plays a crucial role to solve the Lyapunov equation

(1.3) ATP + PA+Q = 0,

where Q is a positive definite matrix and all eigenvalues of the matrix A have
negative real parts ([5, 8]). In infinite-dimensional setting, it was shown in
[7] and [8] that the p-exponential stability with p = 2 implies the existence
of a unique solution of Lyapunov equation, provided that the matrix A has
additional off-diagonal decay.
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Let 0 ≤ θ < 1 and B be a Banach algebra of matrices. We say that a matrix
algebra A with norm ‖ · ‖A is a differential subalgebra of the Banach algebra B
with order θ if there exist positive constants C and C′ such that

(1.4) ‖AB‖A ≤ C‖A‖A‖B‖A

((
‖A‖B
‖A‖A

)1−θ

+

(
‖B‖B
‖B‖A

)1−θ
)
,

and

(1.5) ‖A‖B ≤ C′‖A‖A

for all A,B ∈ A. The aim of this paper is to show that if A is a differential
subalgebra of Banach algebras B(ℓr), 1 ≤ r ≤ ∞, with order θ ∈ [0, 1) and if
the linear system (1.1) is p-exponentially stable for some 1 ≤ p ≤ ∞, then the
linear system (1.1) is q-exponentailly stable for any 1 ≤ q ≤ ∞.

The paper is organized as follows. In Section 2, we introduce some differen-
tial subalgebras of B(ℓp), including Gröchenig-Schur class, Gohberg-Baskakov-
Sjöstrand class, and Beurling class. In Section 3, we show that if an infinite
matrix A satisfies (1.4) and (1.5), then p-exponential stability of the associated
linear system (1.1) are equivalent to each other for different 1 ≤ p ≤ ∞.

In this paper, the capital C is an absolute constant which may be different
at each occurrence.

2. Differentiable matrix algebras

In this section, we introduce some matrix algebras which are differential
subalgebras of B(ℓr), 1 ≤ r ≤ ∞.

A weight u in this paper is a matrix on Z
d × Z

d with

(2.1) 1 ≤ u(i, j) = u(j, i) < ∞

and

(2.2) D(u) := sup
i∈Zd

u(i, i) < ∞.

For a matrix a and a weight u, denote their entry multiplication by

au := ((au)(i, j))i,j∈Zd = (a(i, j)u(i, j))i,j∈Zd ,

and entry reciprocal by

u−1 = ((u(i, j))−1)i,j∈Zd .

Denote by | · |∞ the infinite norm on the d-dimensional Euclidean space Rd. In
the next definition, we introduce some matrix algebras.

Definition 2.1. Let 1 ≤ p ≤ ∞ and u be a weight. The Gröchenig-Schur

class

(2.3) Ap,u := {A : ‖A‖Ap,u
< ∞}
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contains all matrices A := (a(i, j))i,j∈Zd with

(2.4) ‖A‖Ap,u
:=max

{
sup
i∈Zd

‖((au)(i, j))j∈Zd‖p, sup
j∈Zd

‖((au)(i, j))i∈Zd‖p
}
<∞;

the Gohberg-Baskakov-Sjöstrand class

(2.5) Cp,u := {A : ‖A‖Cp,u
< ∞}

includes matrices A with its norm

‖A‖Cp,u
:=
∥∥∥
(

sup
i−j=k

|(au)(i, j)|
)
k∈Zd

∥∥∥
p

(2.6)

being finite; and the Beurling class is the set

(2.7) Bp,u := {A : ‖A‖Bp,u
< ∞},

where

‖A‖Bp,u
:=
∥∥∥
(

sup
|i−j|∞≥|k|∞

|(au)(i, j)|
)
k∈Zd

∥∥∥
p
.(2.8)

From the above definition, we have

(2.9) Bp,u ⊂ Cp,u ⊂ Ap,u

and

(2.10) ‖A‖Ap,u
≤ ‖A‖Cp,u

≤ ‖A‖Bp,u
A ∈ Bp,u.

The reader may refer to [2, 3, 4, 6, 10, 11, 12, 13] for historical remarks and
more properties of the above three classes of matrices.

For 1 ≤ p ≤ ∞, a weight u is called a p-submultiplicative weight if there
exists another weight v satisfying

(2.11) u(i, j) ≤ u(i, k)v(k, j) + v(i, k)u(k, j) for all i, j, k ∈ Z
d,

and one of the following three conditions:

(2.12) sup
i∈Zd

∥∥((vu−1)(i, j)
)
j∈Zd

∥∥
p/(p−1)

+ sup
j∈Zd

∥∥((vu−1)(i, j)
)
i∈Zd

∥∥
p/(p−1)

< ∞

for the Gröchenig-Schur class Ap,u;
∥∥( sup

i−j=k

(vu−1)(i, j)
)
k∈Zd

∥∥
p/(p−1)

< ∞(2.13)

for the Gohberg-Baskakov-Sjöstrand class Cp,u; and
∥∥( sup

|i−j|∞≥|k|∞

(vu−1)(i, j)
)
k∈Zd

∥∥
p/(p−1)

< ∞(2.14)

for the Beurling class Bp,u. For a p-submultiplicative weight u, we call the
weight v in (2.11) a companion weight of u.

Lemma 2.2. Let 1 ≤ p ≤ ∞, u be a weight, and Fp,u be one of three classes

Ap,u, Cp,u and Bp,u. Then the following statements hold.
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(i) If ‖u−1‖Fp/(p−1),u0
< ∞ for the trivial weight u0 having every entry to

be 1, then

(2.15) ‖A‖B(ℓr) ≤ ‖u−1‖Fp/(p−1),u0
‖A‖Fp,u

, 1 ≤ r ≤ ∞.

(ii) If u is a p-submultiplicative weight and v is a companion weight of u,
then there exists a positive constant C such that for all A,B ∈ Fp,u

(2.16) ‖AB‖Fp,u
≤ C(‖A‖Fp,u

‖B‖F1,v + ‖A‖F1,v‖B‖Fp,u
),

where AB is the matrix multiplication.

Proof. (i) It is well-known that

‖A‖B(ℓr) ≤ max
(
sup
j∈Z

∑

i∈Zd

|a(i, j)|, sup
i∈Z

∑

j∈Zd

|a(i, j)|
)
, 1 ≤ r ≤ ∞.

Since for any A ∈ Ap,u,

‖A‖B(ℓr) ≤ ‖A‖A1,u0
≤ ‖u−1‖Ap/(p−1),u0

‖A‖Ap,u
,

this together with (2.10) proves the conclusion (i).
(ii) We prove the conclusion for the Gohberg-Baskakov-Sjöstrand class

only. The reader may follow similar argument to prove the conclusion (ii) for the
Gröchenig-Schur class and for the Beurling class. TakeA := (a(i, j))i,j∈Zd , B :=
(b(i, j))i,j∈Zd in Cp,u, and write AB := (c(i, j))i,j∈Zd . Note from (2.11) that

|(cu)(i, j)| =
∣∣ ∑

ℓ∈Zd

a(i, ℓ)b(ℓ, j)u(i, j)
∣∣

≤
∑

ℓ∈Zd

|(au)(i, ℓ)||(bv)(ℓ, j)|+
∑

ℓ∈Zd

|(av)(i, ℓ)||(bu)(ℓ, j)|.(2.17)

We write â(k) = supj∈Zd |(au)(j + k, j)|. Since
∑

k∈Zd

sup
j∈Zd

|(au)(j + k, j + k′)|p =
∑

k∈Zd

â(k − k′)p = ‖A‖p
Cp,u

for k′ ∈ Z
d, we have that
∑

k∈Zd

sup
i−j=k

( ∑

ℓ∈Zd

|(au)(i, ℓ)||bv(ℓ, j)|
)p

≤
∑

k∈Zd

sup
i−j=k

( ∑

ℓ∈Zd

|(au)(i, ℓ)|p|(bv)(ℓ, j)|
)
×
( ∑

ℓ∈Zd

|(bv)(ℓ, j)|
)p−1

≤ ‖B‖p−1
C1,v

∑

k∈Zd

sup
j∈Zd

( ∑

ℓ∈Zd

|(au)(j + k, ℓ)|p|(bv)(ℓ, j)|
)

≤ ‖B‖p−1
C1,v

∑

k∈Zd

∑

k′∈Zd

(
sup

ℓ−j=k′

|(au)(j + k, ℓ)|p
)(

sup
ℓ−j=k′

|(bv)(ℓ, j)|
)

≤ ‖A‖p
Cp,u

‖B‖p
C1,v

.
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Similarly,
∑

k∈Zd

sup
i−j=k

( ∑

ℓ∈Zd

|(av)(i, ℓ)||(bu)(ℓ, j)|
)p

≤ ‖A‖p
C1,v

‖B‖p
Cp,u

.

The above two estimates together with (2.17) yield
( ∑

k∈Zd

sup
i−j=k

|(cu)(i, j)|p
)1/p

≤ 2
(
‖A‖Cp,u

‖B‖C1,v + ‖A‖C1,v‖B‖Cp,u

)
.

�

For 1 ≤ p ≤ ∞, τ ≥ 0, a p-submultiplicative weight u and a companion
weight v of u, we define ∆(τ) and Ωp/(p−1)(τ) as follows:

(2.18) ∆(τ) = sup
i∈Zd

∑

j∈Zd with
|i−j|∞≤τ

v(i, j) + sup
j∈Zd

∑

i∈Zd with
|i−j|∞≤τ

v(i, j),

Ωp/(p−1)(τ) = sup
i∈Zd

( ∑

j∈Zd with
|i−j|∞>τ

((vu−1)(i, j))p/(p−1)
)(p−1)/p

+ sup
j∈Zd

( ∑

i∈Zd with
|i−j|∞>τ

((vu−1)(i, j))p/(p−1)
)(p−1)/p

(2.19)

for the Gröchenig-Schur class Ap,u;

(2.20) ∆(τ) =
∑

|k|∞≤τ

sup
i−j=k

v(i, j),

(2.21) Ωp/(p−1)(τ) =
( ∑

|k|∞>τ

(
sup

i−j=k

(vu−1)(i, j)
)p/(p−1)

)(p−1)/p

for the Gohberg-Baskakov-Sjöstrand class Cp,u; and

(2.22) ∆(τ) =
∑

|k|∞≤τ

sup
|k|∞≤|i−j|∞≤τ

v(i, j),

(2.23) Ωp/(p−1)(τ) =
( ∑

|k|∞>τ/2

(
sup

|i−j|∞≥|k|∞

(vu−1)(i, j)
)p/(p−1)

)(p−1)/p

for the Beurling class Bp,u.
Polynomial weights

(
(1 + |i − j|∞)α

)
i,j∈Zd

and subexponential weights(
exp(D|i − j|δ

∞
)
)
i,j∈Zd

are p-submultiplicative and they satisfy (2.24) ([11],

[12], [13]), while subpolynomial weights
(
exp

(
D(ln(1 + |i− j|∞))δ

))
i,j∈Zd

are

1-submultiplicative but they do not satisfy (2.24) ([9]), where 1 ≤ p ≤ ∞,
α > d/p, D > 0 and δ ∈ (0, 1).

In the following theorem, a sufficient condition is given for a subalgebra to
be a differential subalgebra.
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Proposition 2.3. Let 1 ≤ p ≤ ∞ and Fp,u be one of three classes Ap,u, Cp,u
and Bp,u. If u is a p-submultiplicative weight with companion weight v, and

there exist D > 0 and 0 ≤ θ < 1 such that

(2.24) inf
τ≥0

[
∆(τ) + t · Ωp/(p−1)(τ)

]
≤ Dtθ for all t ≥ 1,

then Fp,u is a differential subalgebra of B(ℓr), 1 ≤ r ≤ ∞, with order θ, that
is, there exists C > 0 such that for any A,B ∈ Fp,u

(2.25) ‖AB‖Fp,u
≤C‖A‖Fp,u

‖B‖Fp,u

((
‖A‖B(ℓr)

‖A‖Fp,u

)1−θ

+

(
‖B‖B(ℓr)

‖B‖Fp,u

)1−θ
)
.

Proof. We prove the inequality (2.25) when Fp,u is the Gohberg-Baskakov-
Sjöstrand class, so that ∆(τ) and Ωp/(p−1)(τ) are given by (2.20) and (2.21),
respectively. We may follow similar argument to prove the conclusion for the
Gröchenig-Schur class and the Beurling class, and we leave the details for the
interested reader.

Let 1 ≤ p ≤ ∞, A,B ∈ Cp,u, whereA = (a(i, j))i,j∈Zd andB = (b(i, j))i,j∈Zd .

Since for any i, j ∈ Z
d,

|b(i, j)| ≤ ‖B‖B(ℓr),

we have that for any τ > 0

‖B‖C1,v =
∑

k∈Zd

sup
i−j=k

|(bv)(i, j)|

≤ ‖B‖B(ℓp)

∑

|k|≤τ

sup
i−j=k

v(i, j) +
∑

|k|∞>τ

sup
i−j=k

|(bu)(i, j)|(vu−1)(i, j)

≤ ‖B‖B(ℓp)∆(τ) + ‖B‖Cp,u
Ωp/(p−1)(τ).

Since by Lemma 2.2(i) there exists C1 ≥ 1 such that

‖H‖B(ℓr) ≤ C1‖H‖Cp,u

for all H ∈ Cp,u, we obtain from (2.16) and (2.24) that

‖AB‖Cp,u
≤ C(‖A‖Cp,u

‖B‖C1,v + ‖A‖C1,v‖B‖Cp,u
)

≤ C
(
‖A‖Cp,u

(‖B‖B(ℓr)∆(τ) + C1‖B‖Cp,u
Ωp/(p−1)(τ))

+ ‖B‖Cp,u
(‖A‖B(ℓr)∆(τ) + C1‖A‖Cp,u

Ωp/(p−1)(τ))
)

≤ CCθ
1D‖A‖Cp,u

‖B‖B(ℓr)

(
‖B‖Cp,u

‖B‖B(ℓr)

)θ

+ CCθ
1D‖A‖B(ℓr)‖B‖Cp,u

(
‖A‖Cp,u

‖A‖B(ℓr)

)θ

= CCθ
1D‖A‖Cp,u

‖B‖Cp,u

((
‖A‖B(ℓr)

‖A‖Cp,u

)1−θ

+

(
‖B‖B(ℓr)

‖B‖Cp,u

)1−θ)
.
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This completes the proof. �

3. Exponential stability

The following is the main theorem of this paper.

Theorem 3.1. Let 0 ≤ θ < 1 and A be a Banach algebra with norm ‖ · ‖A.
Suppose that A is a differential subalgebra of B(ℓr), 1 ≤ r ≤ ∞, with order θ.
If the linear system (1.1) associated with A ∈ A is p-exponentially stable for

some 1 ≤ p ≤ ∞, then it is q-exponentially stable for any 1 ≤ q ≤ ∞.

Proof. Let 0 ≤ θ < 1, A ∈ A and 1 ≤ p ≤ ∞. The solution of the system (1.1)
is given by

exp(tA) =

∞∑

n=0

(tA)n

n!
.

Then exp(tA) ∈ A as

‖ exp(tA)‖A ≤
∞∑

n=0

|t|n‖A‖n
A

n!
< ∞, t ∈ R.

By p-exponential stability, there exist constants M and α > 0 such that

(3.1) ‖ exp(tA)‖B(ℓp) ≤ Me−αt for any t ≥ 0.

Letting A = B in (1.4) gives

(3.2) ‖A2‖A ≤ 2C‖A‖1+θ
A

‖A‖1−θ
B(ℓp) for all A ∈ A.

Let t ≥ 1 and N be the nonnegative integer such that t/2N ∈ [1, 2), which
implies that

(3.3) log2 t− 1 < N ≤ log2 t.

We put B = exp( t
2N A). Observing from (3.1) that for β > 0 and a nonnegative

integer k,

‖B2k‖β
B(ℓp) ≤ Mβe−α t 2k−Nβ ,

it follows from (3.2) that

‖B2N‖A ≤ 2C‖B2N−1

‖1+θ
A

‖B2N−1

‖1−θ
B(ℓp)

≤ (2C)2‖B2N−2

‖
(1+θ)2

A
‖B2N−2

‖
(1+θ)(1−θ)
B(ℓp) ‖B2N−1

‖1−θ
B(ℓp)

≤ · · ·

≤ (2C)N‖B‖
(1+θ)N

A
‖B‖

(1+θ)N−1(1−θ)
B(ℓp) ‖B2‖

(1+θ)N−2(1−θ)
B(ℓp) · · ·

· · · ‖B2N−1

‖
(1−θ)
B(ℓp)

≤ (2C)N C̃(1+θ)NM (1+θ)N−1(1−θ)e−αt2−N (1+θ)N−1(1−θ)×

×M (1+θ)N−2(1−θ)e−αt2−N+1(1+θ)N−2(1−θ) · · ·M (1−θ)e−αt2−1(1−θ)
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= (2C)N C̃(1+θ)NM (1−θ)
(
(1+θ)N−1+(1+θ)N−2+···+1

)
× · · ·

· · · × e−αt(1−θ)
(

(1+θ)N−1

2N
+ (1+θ)N−2

2N−1 +···+ 1
2

)
,(3.4)

where sups∈[1,2) ‖ exp(sA)‖A = C̃. Observing from (3.3) that

e−αt(1−θ)
(

(1+θ)N−1

2N
+

(1+θ)N−2

2N−1 +···+ 1
2

)
= e−αteαt

(
1+θ

2

)
N

≤e−αteαt(t/2)
log2

1+θ

2 ≤ e−αte2αt
log2(1+θ)

and

M (1−θ)
(
(1+θ)N−1+(1+θ)N−2+···+1

)
≤ M

(1−θ)
θ

(1+θ)N ≤ e
(1−θ)

θ
tlog2(1+θ) lnM .

Combining the above two estimates with (3.4), we obtain that for any t ≥ 1

‖ exp(tA)‖A ≤ exp
(
− αt+ tlog2(1+θ)(2α+

1− θ

θ
lnM + ln C̃)+

+ (ln 2C)(log2 t)
)
.(3.5)

Since maxt∈[0,1] ‖ exp(tA)‖A ≤ e‖A‖A is bounded, from (3.5) we have that for
any 0 < α′ < α, there exists a positive constant M ′ satisfying

(3.6) ‖ exp(tA)‖A ≤ M ′e−α′t.

Combining (1.5) and (3.6) yields that

(3.7) ‖ exp(tA)‖B(ℓq) ≤ C′M ′e−α′t for all t ≥ 0,

where 1 ≤ q ≤ ∞. This proves that the linear system (1.1) is q-exponentially
stable. �

Let 1 ≤ p ≤ ∞. If a Banach algebra A is one of three classes Ap,u, Cp,u
and Bp,u, and u is a p-submultiplicative weight satisfying (2.24), then (1.5) is
satisfied by Lemma 2.2, and A is a differential subalgebra of B(ℓr), 1 ≤ r ≤ ∞,
by Proposition 2.3. Hence we have the following corollary.

Corollary 3.2. Let 1 ≤ p ≤ ∞, A be one of three classes Ap,u, Cp,u and Bp,u,

and u be a p-submultiplicative weight matrix satisfying (2.24) and A ∈ A. Then

q-exponential stability of the linear system (1.1) associated with A for different

1 ≤ q ≤ ∞ is equivalent to each other.
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