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COMMON FIXED POINTS FOR SINGLE-VALUED AND

MULTI-VALUED MAPPINGS IN COMPLETE R-TREES

Withun Phuengrattana and Sirichai Sopha

Abstract. The aim of this paper is to prove some strong convergence
theorems for the modified Ishikawa iteration process involving a pair of
a generalized asymptotically nonexpansive single-valued mapping and a
quasi-nonexpansive multi-valued mapping in the framework of R-trees
under the gate condition.

1. Introduction

Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X is a
map φ from a closed interval [0, l] ⊂ R to X such that φ(0) = x, φ(l) = y, and
d(φ(t1), φ(t2)) = |t1 − t2| for all t1, t2 ∈ [0, l]. In particular, φ is an isometry
and d(x, y) = l. The image of φ is called a geodesic segment joining x and y.
When it is unique this geodesic segment is denoted by [x, y]. For each x, y ∈ X
and α ∈ (0, 1), we denote the point z ∈ [x, y] such that d(x, z) = αd(x, y) by
(1 − α)x ⊕ αy. The space (X, d) is said to be a geodesic metric space if every
two points of X are joined by a geodesic, and X is said to be uniquely geodesic

if there is exactly one geodesic joining x and y for each x, y ∈ X . A nonempty
subset D of X is said to be convex if D includes every geodesic segment joining
any two of its points. A nonempty subset D of X is said to be gated if for any
point x 6∈ D there is a unique point yx such that for any z ∈ D,

d(x, z) = d(x, yx) + d(yx, z).

Clearly, gate sets in a complete geodesic space are always closed and convex.
The point yx is called the gate of x in D. It is easy to see that yx is also the
unique nearest point of x in D.

Definition 1.1. An R-tree is a geodesic metric space X such that:
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(i) there is a unique geodesic segment [x, y] joining each pair of points
x, y ∈ X ;

(ii) if [y, x] ∩ [x, z] = {x}, then [y, x] ∪ [x, z] = [y, z].

It follows by (i) and (ii) that

(iii) if u, v, w ∈ X , then [u, v] ∩ [u,w] = [u, z] for some z ∈ X .

An R-tree is a special case of a CAT(0) space. For a thorough discussion of
CAT(0) spaces and their applications, see [5]. Note that a metric space X is a
complete R-tree if and only if X is hyperconvex with unique geodesic segments,
see [8].

R-trees were introduced by Tits [18] in 1977. Fixed point theory for single-
valued mappings in R-trees was first studied by Kirk [9]. He proved that every
continuous single-valued mappings defined on a geodesically bounded complete
R-tree always has a fixed point. Since then fixed point theorems for various
types of single-valued and multi-valued mappings in R-trees has been rapidly
developed and many of papers have appeared (e.g., see [2, 3, 4, 7, 9, 11]).

In 2009, Shahzad and Zegeye [16] proved strong convergence theorems of
the Ishikawa iteration for a quasi-nonexpansive multi-valued mapping satisfy-
ing the endpoint condition in Banach spaces. They also constructed a mod-
ified Ishikawa iteration and proved strong convergence theorems of the pro-
posed iteration without the endpoint condition. Later in 2010, Puttasontiphot
[13] obtained similar results in complete CAT(0) spaces. In 2012, Saman-
mit and Panyanak [15] introduced a new condition on mappings in R-trees
which is more general than the endpoint condition, call it the gate condition,
and proved strong convergence theorems of a modified Ishikawa iteration for a
quasi-nonexpansive multi-valued mapping satisfying such condition in R-trees.

In 2011, Sokhuma and Kaewkhao [17] introduced the following modified
Ishikawa iterative process for finding a common fixed point of a pair of a non-
expansive single-valued mapping T and a nonexpansive multi-valued mapping
S in uniformly convex Banach spaces. For an initial point x1 ∈ D, define
sequences {xn} and {yn} recursively by

{
yn = (1− αn)xn + αnzn,

xn+1 = (1− βn)xn + βnTyn, n ∈ N,
(1)

where zn ∈ Sxn, 0 ≤ αn, βn ≤ 1, and S satisfies the endpoint condition.
They proved that the sequence {xn} generated by (1) converges strongly to a
common fixed point of T and S under some suitable conditions.

Recently, Akkasriworn and Sokhuma [1] extended the results of Sokhuma
and Kaewkhao [17] to a pair of an asymptotically nonexpansive single-valued
mapping and a nonexpansive multi-valued mapping in CAT(0) spaces. They
also proposed the following iterative process for finding a common fixed point
of a pair of an asymptotically nonexpansive single-valued mapping T and a
nonexpansive multi-valued mapping S in CAT(0) spaces. For an initial point
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x1 ∈ D, define sequences {xn} and {yn} recursively by
{

yn = (1− αn)xn ⊕ αnzn,

xn+1 = (1 − βn)xn ⊕ βnT
nyn, n ∈ N,

(2)

where zn ∈ ST nxn, 0 ≤ αn, βn ≤ 1, S satisfies the endpoint condition, and
T, S are commuting.

Remark 1.2. We note that the iterative process (2) is very complicated. The
condition that zn ∈ ST nxn and T, S are commuting may not be necessary.

In this paper, motivated by the above results and Remark 1.2, we introduce
a new iterative process which is a modification of (2) and obtain the strong con-
vergence theorems for finding a common fixed point of a pair of a generalized
asymptotically nonexpansive single-valued mapping and a quasi-nonexpansive
multi-valued mapping in the framework of R-trees under the gate condition.
Our results extend and improve the results of Sokhuma and Kaewkhao [17],
Akkasriworn and Sokhuma [1], Samanmit and Panyanak [15], and the corre-
sponding results given by many authors.

2. Preliminaries

Throughout this paper we denote by N the set of all positive integers. Let D
be a nonempty subset of a metric space X . Let T : D → D be a single-valued
mapping. The set of all fixed points of T will be denoted by F (T ) = {x ∈ D :
x = Tx}.

Definition 2.1. A single-valued mapping T : D → D is said to be

(i) nonexpansive if d(Tx, T y) ≤ d(x, y) for all x, y ∈ D;
(ii) asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1,∞)

such that limn→∞ kn = 1 and d(T nx, T ny) ≤ knd(x, y) for all x, y ∈ D
and n ∈ N;

(iii) generalized asymptotically nonexpansive if there exist two sequences
{kn} ⊂ [1,∞) and {sn} ⊂ [0,∞) such that limn→∞kn = 1, limn→∞sn
= 0 and d(T nx, T ny) ≤ knd(x, y) + sn for all x, y ∈ D and n ∈ N;

(iv) uniformly L-Lipschitzian if there exists a constant L > 0 such that
d(T nx, T ny) ≤ Ld(x, y) for all x, y ∈ D and n ∈ N.

In the case of sn = 0 for all n ∈ N, the mapping T will be called an

asymptotically nonexpansive mapping. In particular, if kn = 1 and sn = 0
for all n ∈ N, a single-valued mapping T reduce to a nonexpansive mapping.
The fixed point property for generalized asymptotically nonexpansive single-
valued mappings can be found in [12]. The next example shows that there is a
generalized asymptotically nonexpansive mapping which is not asymptotically
nonexpansive and its fixed point set is not necessarily closed.
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Example 2.2 ([12]). Define a single-valued mapping T :
[
− 2

3 ,
2
3

]
→

[
− 2

3 ,
2
3

]

by

Tx =





x, if x ∈

[
−
2

3
, 0

)
,

16

81
, if x = 0,

x4, if x ∈

(
0,

2

3

]
.

Then T is generalized asymptotically nonexpansive. It is clear that T is not
asymptotically nonexpansive and F (T ) =

[
− 2

3 , 0
)
which is not closed.

Remark 2.3. It is worth mentioning that if T is uniformly L-Lipschitzian and
generalized asymptotically nonexpansive, then F (T ) is always closed.

We shall denote the family of nonempty closed bounded subsets of D by
CB(D), the family of nonempty closed convex subsets of D by CC(D), and
the family of nonempty compact convex subsets ofD byKC(D). The Pompeiu-

Hausdorff distance [19] on CB(D) is defined by

H(A,B) = max

{
sup
x∈A

dist(x,B), sup
y∈B

dist(y,A)

}
for A,B ∈ CB(D).

where dist(x,D) = inf{d(x, y) : y ∈ D} is the distance from a point x to a
subset D. Let S be a multi-valued mapping of D into CB(D). The set of all
fixed points of S will be denoted by F (S) = {x ∈ D : x ∈ Sx}. A point x ∈ D
is called an endpoint of S if x is a fixed point of S and Sx = {x}. The set of
all endpoints of S will be denoted by End(S). We see that for each mapping
S, End(S) ⊆ F (S) and the converse is not true in general. A multi-valued
mapping S is said to satisfy the endpoint condition if End(S) = F (S). A point
x is called a common fixed point of T and S if x = Tx ∈ Sx.

Definition 2.4. A multi-valued mapping S : D → CB(D) is said to

(i) be nonexpansive if H(Sx, Sy) ≤ d(x, y) for all x, y ∈ D;
(ii) be quasi-nonexpansive if F (S) 6= ∅ and H(Sx, Sz) ≤ d(x, z) for all

x ∈ D and z ∈ F (S);
(iii) be hemicompact if for any sequence {xn} in D such that

lim
n→∞

dist(xn, Sxn) = 0,

there exists a subsequence {xni
} of {xn} such that {xni

} converges
strongly to p ∈ D. We note that if D is compact, then every multi-
valued mapping S is hemicompact.

(iv) satisfy condition (Eµ) where µ ≥ 0 if for each x, y ∈ D,

dist(x, Sy) ≤ µdist(x, Sx) + d(x, y).

We say that S satisfies condition (E) whenever S satisfies (Eµ) for
some µ ≥ 1.
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Remark 2.5. From Definition 2.4, it is clear that

(i) every nonexpansive multi-valued mapping S with F (S) 6= ∅ is quasi-
nonexpansive but there exist quasi-nonexpansive mappings that are not
nonexpansive;

(ii) if S is nonexpansive, then S satisfies the condition (E1);
(iii) if S is quasi-nonexpansive, then F (S) is closed.

The next example shows that there is a quasi-nonexpansive mapping which
is not nonexpansive.

Example 2.6. Let D = [0,∞) with the usual metric and S : D → CB(D) be
a multi-valued mapping defined by

Sx =





{0}, if x ∈ [0, 2],
[
x−

7

4
, x−

4

3

]
, if x ∈ (2,∞).

Then S is quasi-nonexpansive and F (S) = {0}. It is easy to see that S is not
nonexpansive since H(S(4), S(2)) = H([ 94 ,

8
3 ], {0}) =

8
3 > 2 = |4− 2|.

Let S : D → CC(D) be a multi-valued mapping with F (S) 6= ∅. We say
that a point u ∈ D is a key of S if, for each x ∈ F (S), x is the gate of u in
Sx. We say that S satisfies the gate condition if S has a key in D. It is clear
that the endpoint condition implies the gate condition but the converse is not
true. The following example shows that there is a mapping satisfying the gate
condition but does not satisfy the endpoint condition.

Example 2.7 ([15]). Let D = [0, 1] and S : D → CC(D) be defined by

Sx = [0, x] for all x ∈ D.

We see that F (S) = [0, 1] and u = 1 is a key of S. It is obvious that End(S) =
{0}. Then S does not satisfy the endpoint condition.

We now collect some basic properties of R-trees.

Lemma 2.8. Let X be a complete R-tree. Then the following statements hold:

(i) [6] If x, y, z ∈ X and α ∈ [0, 1], then

d(z, αx⊕ (1− α)y)2 ≤ αd(z, x)2 + (1− α)d(z, y)2 − α(1 − α)d(x, y)2.

(ii) [6] If x, y, z ∈ X, then d(x, z)+d(z, y) = d(x, y) if and only if z ∈ [x, y].
(iii) [7] The gate subsets of X are precisely its closed and convex subsets.

(iv) [11] If A and B are bounded closed convex subsets of X, then

d(PA(u), PB(u)) ≤ H(A,B)

for any u ∈ X, where PA(u), PB(u) are respectively the unique nearest

points of u in A and B.

The following result is a characterization of CAT(0) spaces. It can be applied
to an R-tree as well.
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Lemma 2.9 ([10]). Let X be a CAT(0) space, and let x ∈ X. Suppose that {tn}
is a sequence in [a, b] for some a, b ∈ (0, 1) and that {xn}, {yn} are sequences

in X such that lim supn→∞
d(xn, x) ≤ R, lim supn→∞

d(yn, x) ≤ R and

lim
n→∞

d((1 − tn)xn ⊕ tnyn, x) = R for some R ≥ 0.

Then limn→∞ d(xn, yn) = 0.

The following facts are needed for proving our main results.

Definition 2.10 ([14]). Let F be a nonempty subset of a complete metric
space X and let {xn} be a sequence in X . We say that {xn} is of monotone

type (I) with respect to F if there exist sequences {δn} and {εn} of nonnegative
real numbers such that

∑
∞

n=1 δn < ∞,
∑

∞

n=1 εn < ∞ and d(xn+1, p) ≤ (1 +
δn)d(xn, p) + εn for all n ∈ N and p ∈ F .

Proposition 2.11 ([14]). Let F be a nonempty closed subset of a complete

metric space X and let {xn} be a sequence in X. If {xn} is of monotone type

(I) with respect to F and lim infn→∞ dist(xn, F ) = 0, then limn→∞ xn = p for

some p ∈ F .

Lemma 2.12 ([20]). Let {an}, {bn}, and {cn} be sequences of nonnegative

real numbers satisfying:

an+1 ≤ (1 + cn)an + bn for all n ∈ N,

where
∑

∞

n=1 bn < ∞ and
∑

∞

n=1 cn < ∞. Then

(i) limn→∞ an exists.

(ii) If lim infn→∞ an = 0, then limn→∞ an = 0.

3. Main results

In order to prove our main results, the following lemmas are needed.

Lemma 3.1. Let D be a nonempty closed convex subset of a complete R-

tree X. Let T : D → D be a generalized asymptotically nonexpansive single-

valued mapping with sequences {kn} ⊂ [1,∞) and {sn} ⊂ [0,∞) such that∑
∞

n=1(kn − 1) < ∞ and
∑

∞

n=1 sn < ∞. Let S : D → KC(D) be a quasi-

nonexpansive multi-valued mapping satisfying the gate condition. Assume that

F (T ) ∩ F (S) is nonempty and closed. Let u be a key of S. For x1 ∈ D, the

sequence {xn} generated by

yn = (1− αn)xn ⊕ αnzn for all n ∈ N,

where zn is the gate of u in Sxn, and

xn+1 = (1− βn)xn ⊕ βnT
nyn for all n ∈ N,

where {αn} and {βn} are sequences in [0, 1]. Then limn→∞ d(xn, p) exists for

all p ∈ F (T ) ∩ F (S).
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Proof. Let p ∈ F (T ) ∩ F (S), we have

d(xn+1, p) ≤ (1− βn)d(xn, p) + βnd(T
nyn, p)

≤ (1− βn)d(xn, p) + βn(knd(yn, p) + sn)

= (1− βn)d(xn, p) + βnknd(yn, p) + βnsn

≤ (1− βn)d(xn, p) + βnkn((1− αn)d(xn, p) + αnd(zn, p)) + βnsn

= (1− βn + βnkn(1− αn))d(xn, p) + βnαnknd(zn, p) + βnsn

≤ (1− βn + βnkn(1− αn))d(xn, p) + βnαnknd(PSxn
(u), PSp(u))

+ βnsn

≤ (1− βn + βnkn(1− αn))d(xn, p) + βnαnknH(Sxn, Sp) + βnsn

≤ (1− βn + βnkn(1− αn))d(xn, p) + βnαnknd(xn, p) + βnsn

= (1− βn + βnkn(1− αn) + βnαnkn)d(xn, p) + βnsn

= (1− βn + βnkn)d(xn, p) + βnsn

= (1 + βn(kn − 1))d(xn, p) + βnsn

≤ (1 + (kn − 1))d(xn, p) + sn.

By Lemma 2.12,
∑

∞

n=1(kn − 1) < ∞ and
∑

∞

n=1 sn < ∞, we conclude that
limn→∞ d(xn, p) exists for all p ∈ F (T ) ∩ F (S). �

Lemma 3.2. Let D be a nonempty closed convex subset of a complete R-

tree X. Let T : D → D be a generalized asymptotically nonexpansive single-

valued mapping with sequences {kn} ⊂ [1,∞) and {sn} ⊂ [0,∞) such that∑
∞

n=1(kn − 1) < ∞ and
∑

∞

n=1 sn < ∞. Let S : D → KC(D) be a quasi-

nonexpansive multi-valued mapping satisfying the gate condition. Assume that

F (T ) ∩ F (S) is nonempty and closed. Let u be a key of S. For x1 ∈ D, the

sequence {xn} generated by

yn = (1− αn)xn ⊕ αnzn for all n ∈ N,

where zn is the gate of u in Sxn, and

xn+1 = (1− βn)xn ⊕ βnT
nyn for all n ∈ N,

where {αn} and {βn} are sequences in [0, 1] such that 0 < a ≤ αn, βn ≤
b < 1. Then, we have limn→∞ d(xn, zn) = 0 and limn→∞ d(xn, T

nxn) = 0.
Moreover, if a single-valued mapping T is also uniformly L-Lipschitzian, then
limn→∞ d(xn, T xn) = 0.

Proof. Let p ∈ F (T ) ∩ F (S). By Lemma 3.1, limn→∞ d(xn, p) exists. Set

lim
n→∞

d(xn, p) = c.

If c = 0, then all the conclusions are trivial. Therefore we will assume that
c > 0. By the definition of the sequence {xn}, we have

d(T nyn, p) ≤ knd(yn, p) + sn
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≤ kn(1− αn)d(xn, p) + knαnd(zn, p) + sn

≤ kn(1− αn)d(xn, p) + knαnd(PSxn
(u), PSp(u)) + sn

≤ kn(1− αn)d(xn, p) + knαnH(Sxn, Sp) + sn

≤ kn(1− αn)d(xn, p) + knαnd(xn, p) + sn

= knd(xn, p) + sn.

It follows from limn→∞ kn = 1 and limn→∞ sn = 0 that

lim sup
n→∞

d(T nyn, p) ≤ lim sup
n→∞

d(yn, p) ≤ lim sup
n→∞

d(xn, p).(3)

Since c = lim supn→∞
d(xn+1, p) = lim supn→∞

d((1 − βn)xn ⊕ βnT
nyn, p), it

follows by Lemma 2.9 that

lim
n→∞

d(xn, T
nyn) = 0.(4)

Consider

d(xn+1, p) ≤ (1− βn)d(xn, p) + βnd(T
nyn, p)

≤ (1− βn)d(xn, p) + βn(knd(yn, p) + sn).

This implies that

d(xn+1, p)− d(xn, p) ≤ βn(knd(yn, p)− d(xn, p) + sn).

Therefore,

d(xn+1, p)− d(xn, p)

b
+ d(xn, p) ≤

d(xn+1, p)− d(xn, p)

βn

+ d(xn, p)

≤ knd(yn, p) + sn.

It implies by (3) that

c = lim inf
n→∞

(
d(xn+1, p)− d(xn, p)

b
+ d(xn, p)

)

≤ lim inf
n→∞

(knd(yn, p) + sn)

= lim inf
n→∞

d(yn, p)

≤ lim sup
n→∞

d(yn, p) ≤ c.

Thus,

c = lim
n→∞

d(yn, p) = lim
n→∞

d((1− αn)xn ⊕ αnzn, p).

Since

d(zn, p) = d(PSxn
(u), PSp(u)) ≤ H(Sxn, Sp) ≤ d(xn, p),

it implies that

lim sup
n→∞

d(zn, p) ≤ lim sup
n→∞

d(xn, p) = c.
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Using Lemma 2.9, we get

lim
n→∞

d(xn, zn) = 0.(5)

Next, we show that limn→∞ d(xn, T
nxn) = 0. Since T is generalized asymp-

totically nonexpansive, we have

d(T nxn, xn) ≤ d(T nxn, T
nyn) + d(T nyn, xn)

≤ knd(xn, yn) + sn + d(T nyn, xn)

= knαnd(xn, zn) + d(T nyn, xn) + sn

≤ knd(xn, zn) + d(T nyn, xn) + sn.

Then, by (4) and (5), we get

lim
n→∞

d(T nxn, xn) = 0.(6)

Finally, if T is uniformly L-Lipschitzian, then we have

d(xn, T xn) ≤ d(xn, xn+1) + d(xn+1, T
n+1xn+1) + d(T n+1xn+1, T

n+1xn)

+ d(T n+1xn, T xn)

≤ (1 + L)d(xn, xn+1) + d(xn+1, T
n+1xn+1) + Ld(T nxn, xn)

≤ (1 + L)βnd(xn, T
nyn) + d(xn+1, T

n+1xn+1) + Ld(T nxn, xn)

≤ (1 + L)bd(xn, T
nyn) + d(xn+1, T

n+1xn+1) + Ld(T nxn, xn).

By (4) and (6), we conclude that limn→∞ d(xn, T xn) = 0. �

By Remarks 2.3 and 2.5(iii), F (T ) ∩ F (S) is always closed. Then we have
the following strong convergence theorem in complete R-trees.

Theorem 3.3. Let D be a nonempty compact convex subset of a complete R-

tree X. Let T : D → D be a uniformly L-Lipschitzian and generalized asymp-

totically nonexpansive single-valued mapping with sequences {kn} ⊂ [1,∞)
and {sn} ⊂ [0,∞) such that

∑
∞

n=1(kn − 1) < ∞ and
∑

∞

n=1 sn < ∞. Let

S : D → KC(D) be a quasi-nonexpansive multi-valued mapping satisfying the

gate condition and the condition (E). Assume that F (T ) ∩ F (S) is nonempty.

Let u be a key of S. For x1 ∈ D, the sequence {xn} generated by

yn = (1− αn)xn ⊕ αnzn for all n ∈ N,

where zn is the gate of u in Sxn, and

xn+1 = (1− βn)xn ⊕ βnT
nyn for all n ∈ N,

where {αn} and {βn} are sequences in [0, 1] such that 0 < a ≤ αn, βn ≤ b < 1.
Then the sequence {xn} converges strongly to a common fixed point of T and

S.
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Proof. By Lemma 3.1, {xn} is bounded. Since D is compact, there exists a
subsequence {xni

} of {xn} converges strongly to p in D. By condition (E),
there exists µ ≥ 1 such that

dist(p, Sp) ≤ d(p, xni
) + dist(xni

, Sp)

≤ d(xni
, p) + µdist(xni

, Sxni
) + d(xni

, p)

= 2d(xni
, p) + µdist(xni

, Sxni
)

≤ 2d(xni
, p) + µd(xni

, zn).

Then, by Lemma 3.2, we have p ∈ F (S). Since T is uniformly L-Lipschitzian,
we have

d(Tp, p) ≤ d(Tp, Txni
) + d(Txni

, xni
) + d(xni

, p)

≤ (L+ 1)d(xni
, p) + d(Txni

, xni
).

By Lemma 3.2, it implies that p ∈ F (T ).
Therefore, p ∈ F (T ) ∩ F (S).
Since limn→∞ d(xn, p) exists, we get limn→∞ d(xn, p) = limi→∞ d(xni

, p) =
0. This shows that the sequence {xn} converges strongly to a common fixed
point of T and S. �

The compactness of D can be dropped if a multi-valued mapping S is hemi-
compact. Then the following theorem is obtained immediately from Theorem
3.3.

Theorem 3.4. Let D be a nonempty closed convex subset of a complete R-tree

X. Let T : D → D be a uniformly L-Lipschitzian and generalized asymp-

totically nonexpansive single-valued mapping with sequences {kn} ⊂ [1,∞)
and {sn} ⊂ [0,∞) such that

∑
∞

n=1(kn − 1) < ∞ and
∑

∞

n=1 sn < ∞. Let

S : D → KC(D) be a quasi-nonexpansive multi-valued mapping satisfying the

gate condition and the condition (E). Assume that F (T ) ∩ F (S) is nonempty.

Let u be a key of S. For x1 ∈ D, the sequence {xn} generated by

yn = (1− αn)xn ⊕ αnzn for all n ∈ N,

where zn is the gate of u in Sxn, and

xn+1 = (1− βn)xn ⊕ βnT
nyn for all n ∈ N,

where {αn} and {βn} are sequences in [0, 1] such that 0 < a ≤ αn, βn ≤ b < 1.
If S is hemicompact, then the sequence {xn} converges strongly to a common

fixed point of T and S.

Proof. Since S is hemicompact, there exists a subsequence {xni
} of {xn} con-

verges strongly to p in D. As in the proof of Theorem 3.3, we obtain that the
sequence {xn} converges strongly to a common fixed point of T and S. �

In our next theorem, we show that the condition (E) and hemicompactness
of S in Theorem 3.4 can be omitted if lim infn→∞ dist(xn, F (T ) ∩ F (S)) = 0.



COMMON FIXED POINTS 517

Theorem 3.5. Let D be a nonempty closed convex subset of a complete R-tree

X. Let T : D → D be a uniformly L-Lipschitzian and generalized asymp-

totically nonexpansive single-valued mapping with sequences {kn} ⊂ [1,∞)
and {sn} ⊂ [0,∞) such that

∑
∞

n=1(kn − 1) < ∞ and
∑

∞

n=1 sn < ∞. Let

S : D → KC(D) be a quasi-nonexpansive multi-valued mapping satisfying the

gate condition. Assume that F (T ) ∩ F (S) is nonempty. Let u be a key of S.
For x1 ∈ D, the sequence {xn} generated by

yn = (1− αn)xn ⊕ αnzn for all n ∈ N,

where zn is the gate of u in Sxn, and

xn+1 = (1− βn)xn ⊕ βnT
nyn for all n ∈ N,

where {αn} and {βn} are sequences in [0, 1] such that 0 < a ≤ αn, βn ≤ b < 1.
Then, the sequence {xn} converges strongly to a common fixed point of T and

S if and only if lim infn→∞ dist(xn, F (T ) ∩ F (S)) = 0.

Proof. The necessity is obvious and then we prove only the sufficiency. Suppose
that lim infn→∞ dist(xn, F (T ) ∩ F (S)) = 0. In the proof of Lemma 3.1, we
obtain that the sequence {xn} is of monotone type (I) with respect to F (T ) ∩
F (S). By the closedness of F (T ) ∩ F (S) and Proposition 2.11, we have {xn}
converges strongly to a point in F (T ) ∩ F (S). �

Remark 3.6. Theorems 3.3-3.5 extend and improve the results of Sokhuma
and Kaewkhao [17] to a pair of a generalized asymptotically nonexpansive
single-valued mapping and a quasi-nonexpansive multi-valued mapping in R-
tree without assuming the endpoint condition. Theorems 3.3-3.5 improve the
results of Samanmit and Panyanak [15] to a pair of a generalized asymptotically
nonexpansive single-valued mapping and a quasi-nonexpansive multi-valued
mapping.
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