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ON THE RESIDUAL FINITENESS OF CERTAIN

POLYGONAL PRODUCTS OF FREE GROUPS

Goansu Kim

Abstract. In general, polygonal products of free groups are not residu-
ally finite. Using the residual finiteness of polygonal products of nilpotent
groups, we show that certain polygonal products of free groups are resid-
ually finite.

1. Introduction

A group G is called residually finite (RF) if and only if, for each element
1 6= x ∈ G, there exists a normal subgroup N of finite index in G such that
x 6∈ N . Since Mostowski [11] solved the word problem for finitely presented
residually finite groups, it is interesting to find residually finite groups.

Polygonal products of groups were introduced by A. Karrass et al. [4] in the
study of the subgroup structure of the Picard group PSL(2,Z[i]), which is a
polygonal product of four finite groups amalgamating cyclic subgroups, with
trivial intersections. Since a polygonal product can appear as a subgroup of
a group, and then the residual properties of the polygonal product determine
the residual properties of the whole group [6, Example 1.1], we are interested
in the residual properties of polygonal products. In [3], Allenby and Tang
proved that polygonal products of four finitely generated free abelian groups,
amalgamating cyclic subgroups with trivial intersections, are residually finite
(RF). And they gave an example of a polygonal product of finitely generated
nilpotent -or free- groups which is not RF . However, in [6, 8], Tang and Kim
showed that certain polygonal products of finitely generated nilpotent groups
are RF or πc. Then, Allenby [1] constructed polygonal products of nilpotent
groups which are not RF , hence untidy conditions in [8] can not be removed.
In [5, 7], Kim proved that polygonal products of more than three polycyclic-
by-finite groups amalgamating central subgroups with trivial intersections are
πc and conjugacy separable, hence they are RF . Allenby [2] showed, using
the criterion in [6], that polygonal products of four polycyclic-by-finite groups,
amalgamating normal subgroups, are πc. Subgroup separability of polygonal
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products is also considered in [5]. Hence, for polygonal products of nilpotent
groups, most of important residual properties are known. Since free groups
are residually finitely generated nilpotent, it is of interest to study the residual
properties of polygonal products of free groups. In this paper we show that
certain polygonal products of free groups amalgamating cyclic subgroups are
residually finite.

2. Preliminaries

Briefly, polygonal products of groups can be described as follows [3]: Let P
be a polygon. Assign a group Gv for each vertex v and a group Ge for each edge
e of P . Let αe and βe be monomorphisms which embed Ge as a subgroup of the
two vertex groups at the ends of the edge e. Then the polygonal product G is
defined to be the group presented by the generators and relations of the vertex
groups together with the extra relations obtained by identifying geαe and geβe

for each ge ∈ Ge. By abuse of language, we say that G is the polygonal product
of the (vertex) groups G1, G2,. . ., Gn, amalgamating the (edge) subgroups H1,
H2, . . ., Hn with trivial intersections, if Gi ∩ Gi+1 = Hi and Hi ∩ Hi+1 = 1,
where 1 ≤ i ≤ n and the subscripts i are taken modulo n. We only consider
the case n ≥ 4 (see [3]).

The proofs of next two results are very similar to Lemma 4.5 and Theorem
4.6 in [8]. Here we use Zi(G) to denote the i-th term of the upper central series
of G with Z1(G), the center of G.

Lemma 2.1. Let G be a finitely generated torsion-free nilpotent group and let

a, b ∈ G be such that 〈a〉 ∩ 〈b〉 = 1. If ∆ is an infinite set of primes, and if

A = 〈a, b〉 is nilpotent of class γ, and a ∈ Zγ(G), then we have:

(1) ∩p∈∆〈xp〉G〈x〉 = 〈x〉 for every x ∈ G;

(2) ∩p∈∆〈ap〉
G〈a〉〈b〉 = 〈a〉〈b〉;

(3) ∩p∈∆〈ap〉
G〈b〉 = 〈b〉.

Theorem 2.2. Let P0 be the polygonal product of the four finitely gener-

ated torsion-free nilpotent groups A0, B0, C0, D0, amalgamating the subgroups

〈b〉, 〈c〉, 〈d〉, 〈a〉, with trivial intersections. Assume that A = 〈a, b〉, B = 〈b, c〉,
C = 〈c, d〉, D = 〈d, a〉 have nilpotent classes k1, k2, k3, k4, respectively, and that

a ∈ Zk1
(A0) ∩ Zk4

(D0), c ∈ Zk2
(B0) ∩ Zk3

(C0). Then P0 is RF .

Corollary 2.3 ([8, Theorem 4.6]). Let P0 be the polygonal product of the

finitely generated torsion-free nilpotent groups A0, B0, C0, D0, amalgamat-

ing 〈b〉, 〈c〉, 〈d〉, 〈a〉, with trivial intersections. If A = 〈a, b〉, B = 〈b, c〉,
C = 〈c, d〉 and D = 〈d, a〉 have the same nilpotent class as A0, B0, C0, and

D0, respectively, then P0 is RF .

Since abelian groups and their subgroups have the same nilpotent class 1,
we directly have the following result.
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Corollary 2.4 ([3, Theorem 3.4]). Let P0 be the polygonal product of the

finitely generated free abelian groups A0, B0, C0, D0, amalgamating 〈b〉, 〈c〉,
〈d〉, 〈a〉, with trivial intersections. Then P0 is RF .

Lemma 2.5 (Magnus [9] or [12, Theorem 6.1.10]). If F is a free group, then

the intersection of all the terms of the lower central series of F is trivial, that

is, F is residually nilpotent.

3. Main results

Since a free group is residually a finitely generated torsion-free nilpotent
group (Lemma 2.5), using Theorem 2.2 and Corollary 2.3, we can study the
residual finiteness of polygonal products of free groups. As mentioned by Al-
lenby and Tang, Example 3.1 in [3] can be extended to a polygonal product
of free groups, hence not all polygonal products of free groups are residually
finite (Example 3.5 below). We denote by Γi(G) the i-th term of the lower
central series of G, that is Γ1(G) = G and Γi+1(G) = [Γi(G), G] for i ≥ 1,
where [A,B] = 〈a−1b−1ab | a ∈ A, b ∈ B〉.

Lemma 3.1. Let G be a finitely generated free group. Let a, b ∈ G be such

that 〈a〉 ∩ 〈b〉 = 1. If ∆ is an infinite set of integers and if Γℓ(G) ∩ 〈a〉〈b〉 = 1,
for some integer ℓ, then we have:

(1) ∩k∈∆Γk(G)〈a〉 = 〈a〉 and ∩k∈∆ Γk(G)〈b〉 = 〈b〉,
(2) ∩k∈∆Γk(G)〈a〉〈b〉 = 〈a〉〈b〉.

Proof. To prove (1), we let n > m ≥ ℓ. If y ∈ Γn(G)〈a〉, then y = wna
in for

some integer in, where wn ∈ Γn(G). Also, if y ∈ Γm(G)〈a〉, then y = wmaim

for some integer im, where wm ∈ Γm(G). It follows that

w−1
n wm = ainy−1ya−im ∈ Γm(G) ⊂ Γℓ(G),

since ℓ ≤ m < n. Thus, we have ain−im ∈ Γℓ(G) ∩ 〈a〉〈b〉 = 1. Hence in = im.
Therefore, α = in is independent of n ≥ ℓ. Now, if y ∈ ∩k∈∆Γk(G)〈a〉, then

y ∈
⋂

ℓ<k∈∆

Γk(G)〈a〉;

hence,

ya−α ∈
⋂

ℓ<k∈∆

Γk(G) = 1,

by Lemma 2.5. Thus we have y = aα ∈ 〈a〉. This proves that ∩k∈∆Γk(G)〈a〉 =
〈a〉. Similarly ∩k∈∆Γk(G)〈b〉 = 〈b〉.

To prove (2), we let n > m ≥ ℓ. If y ∈ Γn(G)〈a〉〈b〉, then y = wna
inbjn for

some integers in and jn, where wn ∈ Γn(G). Also, if y ∈ Γm(G)〈a〉〈b〉, then
y = wmaimbjm for some integers im and jm, where wm ∈ Γm(G). Thus, we
have

w−1
n wm = ainbjny−1yb−jma−im ∈ Γm(G) ⊂ Γℓ(G),
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since ℓ ≤ m < n. Thus ainbjn−jma−im ∈ Γℓ(G), whence, ain−imbjn−jm ∈
Γℓ(G). It follows, by assumption, that in = im and jn = jm. Therefore,
in = im = α and jn = jm = β are independent of n,m ≥ ℓ. Thus, if y ∈
∩k∈∆Γk(G)〈a〉〈b〉, then

y ∈
⋂

ℓ<k∈∆

Γk(G)〈a〉〈b〉;

whence,

yb−βa−α ∈
⋂

ℓ<k∈∆

Γk(G) = 1.

Hence, y = aαbβ ∈ 〈a〉〈b〉, proving (2). �

If G is a homomorphic image of G, then we use x to denote the image of
x ∈ G in G.

Theorem 3.2. Let P0 be the polygonal product of the free groups A0, B0, C0,

D0, amalgamating the cyclic subgroups 〈b〉, 〈c〉, 〈d〉, 〈a〉, with trivial intersec-

tions, where A0 ∩ B0 = 〈b〉, B0 ∩ C0 = 〈c〉, C0 ∩ D0 = 〈d〉, D0 ∩ A0 = 〈a〉.
Let A = 〈a, b〉, B = 〈b, c〉, C = 〈c, d〉, D = 〈d, a〉. Assume that there exist inte-

gers r1, r2, r3, r4 such that, for all positive integers n, Γn(A) = Γn+r1(A0)∩A,
Γn(B) = Γn+r2(B0)∩B, Γn(C) = Γn+r3(C0)∩C and Γn(D) = Γn+r4(D0)∩D.

If a ∈ Γr1+1(A0) ∩ Γr4+1(D0) and c ∈ Γr2+1(B0) ∩ Γr3+1(C0), then P0 is RF .

Proof. Case 1. Suppose that A0, B0, C0, D0 are finitely generated. Let r =
max{r1, r2, r3, r4} and let s ≥ r + 2. Note that Γ2(A) ∩ 〈a〉〈b〉 = 1, where
Γ2(A) = [A,A]. Since Γs(A0) ⊂ Γr1+2(A0) and Γr1+2(A0) ∩ A = Γ2(A) by
assumption, we have Γs(A0)∩〈a〉〈b〉 = 1. Similarly, we have Γs(B0)∩〈b〉〈c〉 = 1,
Γs(C0)∩ 〈c〉〈d〉 = 1 and Γs(D0)∩ 〈d〉〈a〉 = 1. Thus, we can form the polygonal
product P0 of the finitely generated nilpotent groups A0, B0, C0 and D0,
amalgamating 〈b〉, 〈c〉, 〈d〉 and 〈a〉, with trivial intersections, where A0 =
A0/Γs(A0), B0 = B0/Γs(B0), C0 = C0/Γs(C0) and D0 = D0/Γs(D0). Let φs

be the canonical homomorphism of P0 onto P0. Note that AΓs(A0)/Γs(A0) ∼=
A/Γs−r1(A). Hence, A = Aφs = AΓs(A0)/Γs(A0) has nilpotent class s−r1−1.
Similarly, Bφs, Cφs and Dφs have the nilpotent classes s−r2−1, s−r3−1 and
s − r4 − 1, respectively. Note that Γr1+1(A0)/Γs(A0) ≤ Zs−r1−1(A0/Γs(A0))
(see Theorem 7.54 in [13]). Since a ∈ Γr1+1(A0) by assumption, we have
a = aφs ∈ Zs−r1−1(A0). Similarly, a ∈ Zs−r4−1(D0), c ∈ Zs−r2−1(B0) and
c ∈ Zs−r3−1(C0). It follows from Theorem 2.2 that P0φs is RF . Thus, if for
each 1 6= g ∈ P0, we can find an integer s ≥ r + 2 such that gφs 6= 1, then we
will have proved that P0 is RF . The method to find such s is similar to that
of Theorem 2.2, but we use Lemma 3.1 instead of Lemma 2.1. We omit the
details.

Case 2. A0, B0, C0, D0 are not necessarily finitely generated. For each 1 6=
g ∈ P0, we can find a canonical homomorphism π : P0 → P ′

0 such that
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(1) P ′

0 is a polygonal product of finitely generated subgroups A′

0, B
′

0, C
′

0,
D′

0 of A0, B0, C0, D0, amalgamating 〈b〉, 〈c〉, 〈d〉, 〈a〉,
(2) π|P ′

0
is the identity map on P ′

0,
(3) g ∈ P ′

0.

Thus, gπ 6= 1, and P0π = P ′

0 is RF by Case 1. There exists N ′
⊳fP

′

0 such
that gπ 6∈ N ′. Let N be the preimage of N ′ in P0. It follows that N⊳fP0 and
g 6∈ N . This completes the proof. �

The following result follows directly from the above theorem.

Corollary 3.3. Let P0 be the polygonal product of the free groups A0, B0, C0,

D0, amalgamating the cyclic subgroups 〈b〉, 〈c〉, 〈d〉, 〈a〉, with trivial intersec-

tions, where A0∩B0 = 〈b〉, B0∩C0 = 〈c〉, C0∩D0 = 〈d〉, D0∩A0 = 〈a〉. Let A =
〈a, b〉, B = 〈b, c〉, C = 〈c, d〉, D = 〈d, a〉. Assume that Γn(A) = Γn(A0) ∩ A,
Γn(B) = Γn(B0) ∩ B, Γn(C) = Γn(C0) ∩ C and Γn(D) = Γn(D0) ∩D for all

n. Then P0 is RF .

Remark 3.4. The condition “Γn(A) = Γn(A0)∩A for all n” looks quite strong
but, since Γi(A) = Γi(A0) ∩ A implies Γi−1(A) = Γi−1(A0) ∩ A, we have only
two possibilities:

(1) Γn(A) = Γn(A0) ∩ A for all n; or
(2) there exists an integer k such that Γi(A) = Γi(A0) ∩ A for all i ≤ k,

and Γj(A) 6= Γj(A0) ∩ A for all j > k.

Moreover, if (2) occurs, then the following example shows that the polygonal
product may not be RF .

Example 3.5. Let A0 = 〈a1, a2〉, B0 = 〈b1, b2〉, C0 = 〈c1, c2〉, D0 = 〈d1, d2〉
be free. Let G be the polygonal product of A0, B0, C0, D0, obtained by setting
a−1
1 a32a1 = b22, b

−1
1 b2b1 = c2, c

−1
1 c2c1 = d2, and d−1

1 d2d1 = a2. Then G has a
presentation

G = 〈a1, b1, b2, c1, d1 : a−1
1 d−1

1 c−1
1 b−1

1 b32b1c1d1a1 = b22〉.

This implies that G contains the Baumslag-Solitar group 〈a, t : t−1a3t = a2〉
which is not RF [10, p. 307], hence G is not RF . Note that a−3

2 · a−1
1 a32a1 ∈

A∩Γ2(A0)\Γ2(A), where A = 〈a2, a
−1
1 a32a1〉. Hence Γ2(A) 6= Γ2(A0)∩A, hence

Γi(A) 6= Γi(A0) ∩ A for all i ≥ 2. Thus (2) above holds and the condition in
Corollary 3.3 fails.
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