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ON SEMIDERIVATIONS IN 3-PRIME NEAR-RINGS

Mohammad Ashraf and Abdelkarim Boua

Abstract. In the present paper, we expand the domain of work on the
concept of semiderivations in 3-prime near-rings through the study of
structure and commutativity of near-rings admitting semiderivations sat-
isfying certain differential identities. Moreover, several examples have
been provided at places which show that the assumptions in the hypothe-
ses of various theorems are not altogether superfluous.

1. Introduction

Throughout this paper, N is a zero-symmetric left near ring. A near ring
N is called zero symmetric if 0x = 0 for all x ∈ N (recall that in a left near
ring x0 = 0 for all x ∈ N ). N is called 3-prime if xNy = {0} implies x = 0
or y = 0. The symbol Z(N ) will represent the multiplicative center of N ,
that is, Z(N ) = {x ∈ N | xy = yx for all y ∈ N}. For any x, y ∈ N ; as usual
[x, y] = xy−yx and x◦y = xy+yx will denote the well-known Lie product and
Jordan product, respectively. Recall that N is called 2-torsion free if 2x = 0
implies x = 0 for all x ∈ N . For terminologies concerning near-rings we refer
to G. Pilz [7].

An additive mapping d : N → N is said to be a derivation if d(xy) = xd(y)+
d(x)y for all x, y ∈ N , or equivalently, as noted in [8], that d(xy) = d(x)y+xd(y)
for all x, y ∈ N . An additive mapping d : N → N is called semiderivation if
there exists a function g : N → N such that d(xy) = xd(y) + d(x)g(y) =
g(x)d(y)+d(x)y and d(g(x)) = g(d(x)) for all x, y ∈ N . Obviously, any deriva-
tion is a semiderivation, but the converse is not true in general (see [6]). There
has been a great deal of work concerning derivations in near-rings (see [1, 2, 4, 5]
where further references can be found). In this paper, we study the commuta-
tivity of addition and multiplication of near-rings. Two well-known results for
derivations in near-rings have been generalized for semiderivation. In fact, our
results generalize some theorems obtained by the authors together with Raji
in [1].
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2. Some preliminaries

We begin with the following lemmas which are essential for developing the
proof of our main result.

Lemma 2.1 ([3, Lemma 1.2(iii)]). Let N be a 3-prime near-ring. If z ∈
Z(N )− {0} and xz ∈ Z(N ), then x ∈ Z(N ).

Lemma 2.2 ([6, Lemma 2.4]). Let N be a near-ring and d a semiderivation

of N . Then N satisfies the following partial distributive law
(
xd(y) + d(x)g(y)

)
g(z) = xd(y)g(z) + d(x)g(yz) for all x, y, z ∈ N .

Lemma 2.3 ([6, Theorem 2.1]). Let N be a 2-torsion free 3-prime near-ring.

If N admits a nonzero semiderivation d such that d(N ) ⊆ Z(N ), then N is a

commutative ring.

Lemma 2.4 ([6, Theorem 2.2]). Let N be a 2-torsion free 3-prime near-ring.

If N admits a nonzero semiderivation d such that d([x, y]) = 0 for all x, y ∈ N ,

then N is a commutative ring.

Lemma 2.5 ([4, Theorem 2.9]). Let N be a 3-prime near-ring. Then the

following assertions are equivalent:

(i) [x, y] ∈ Z(N ) for all x, y ∈ N .
(ii) N is a commutative ring.

Lemma 2.6 ([6, Lemma 2.3]). Let N be a near-ring. If N admits an additive

mapping d, then the following statements are equivalent:

(i) d is a semiderivation associated with an additive mapping g.
(ii) d(xy) = d(x)g(y) + xd(y) = d(x)y + g(x)d(y) and d(g(x)) = g(d(x))

for all x, y ∈ N .

Lemma 2.7 ([3, Lemma 1.5]). Let N be a 3-prime near-ring. If N ⊆ Z(N ),
then N is a commutative ring.

Lemma 2.8. Let N be a 3-prime near-ring. If d is a semiderivation associated

with an onto map g, then d(Z(N )) ⊆ Z(N ).

Proof. Let z ∈ Z(N ). Then d(zx) = d(xz) for all x ∈ N . Using the definition
of d and Lemma 2.6, we obtain zd(x) + d(z)g(x) = d(x)z + g(x)d(z) for all
x ∈ N . Since z ∈ Z(N ), then the last expression implies d(z)g(x) = g(x)d(z)
for all x ∈ N . Since g is onto, we find that d(z)x = xd(z) for all x ∈ N , i.e.,
d(Z(N )) ⊆ Z(N ). �

Lemma 2.9 ([4, Theorem 2.10]). Let N be a 2-torsion free 3-prime near-ring.

If u ◦ v ∈ Z(N ) for all u, v ∈ Z(N ), then N is a commutative ring.
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3. Main results

We shall start our investigation for semiderivation with the following result:

Theorem 3.1. Let N be a 2-torsion free 3-prime near-ring which admits a

nonzero semiderivation d associated with an onto map g. Then the following

assertions are equivalent:

(i) d([x, y]) ∈ Z(N ) for all x, y ∈ N .
(ii) N is a commutative ring.

Proof. It is clear that (ii)⇒(i).
(i)⇒(ii). We are given that

(3.1) d([x, y]) ∈ Z(N ) for all x, y ∈ N .

Replacing y by xy in (3.1), we get

(3.2) xd([x, y]) + d(x)g([x, y]) ∈ Z(N ) for all x, y ∈ N .

In view of Lemma 2.2, (3.2) becomes

(3.3)
xd([x, y])g(z) + d(x)g([x, y]z)

= g(z)xd([x, y]) + g(z)d(x)g([x, y]) for all x, y, z ∈ N .

Putting xd([u, v]) instead of x in (3.1) and using (3.1), we have

d

(
[xd([u, v]), y]

)
= d

(
d([u, v])[x, y]

)

= d([u, v])d([x, y]) + d2([u, v])g([x, y]) for all u, v, x, y ∈ N .

The above relation reduces to

d([u, v])d([x, y]) + d2([u, v])g([x, y]) ∈ Z(N ) for all u, v, x, y ∈ N .

Applying Lemmas 2.2 & 2.8, we arrive at

(3.4) d2([u, v])N

(
g
([
x, y

]
z
)
− g(z)g

([
x, y

]))
= {0} for all u, v, x, y, z ∈ N .

Since N is 3-prime, the above relation yields that

(3.5) either d2([u, v])=0 or g
([
x, y

]
z
)
=g(z)g

([
x, y

])
for all u, v, x, y, z ∈ N .

Suppose that

g
([
x, y

]
z
)
= g(z)g

([
x, y

])
for all x, y, z ∈ N .

Taking [r, s] instead of x in (3.3) and invoking the last equation, we obtain

[r, s]d

([
[r, s], y

])
g(z) = g(z)[r, s]d

([
[r, s], y

])
for all r, s, y, z ∈ N .

This implies that

(3.6) d

([
[r, s], y

])
N

[
g(z), [r, s]

]
= {0} for all r, s, y, z ∈ N .
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By using 3-primeness of N , the above relation (3.6) yields that

d

([
[r, s], y

])
= 0 or g(z)[r, s] = [r, s]g(z) for all r, s, y, z ∈ N .

Suppose there exist two elements r0, s0 in N such that

(3.7) d

([
[r0, s0], y

])
= 0 for all y ∈ N .

Substituting [r0, s0]y for y in (3.7), we obtain

d
(
[r0, s0]

)[
[r0, s0], y

]
+ g([r0, s0])d

([
[r0, s0], y

])
= 0 for all y ∈ N

which yields that,

d
(
[r0, s0]

)
N

[
[r0, s0], y

]
= {0} for all y ∈ N .

Since N is 3-prime, the above relation implies that

d
(
[r0, s0]

)
= 0 or [r0, s0] ∈ Z(N ).

If there exist two elements r1, s1 of N such that g(z)[r1, s1] = [r1, s1]g(z) for
all z ∈ N , then since g is onto we arrive at z[r1, s1] = [r1, s1]z for all z ∈ N .
This implies that [r1, s1] ∈ Z(N ). Hence in all in all cases, (3.5) becomes

(3.8) d2([u, v]) = 0 or [u, v] ∈ Z(N ) for all u, v ∈ N .

If there exist two elements u1, v1 such that [u1, v1] ∈ Z(N ), then by the simple
calculation of d(x[u1, v1]) = d([u1, v1]x) and using (3.1), we can easily arrive at

(3.9) g([u1, v1])d(x) = d(x)g([u1, v1]) for all x ∈ N .

Putting [u1, v1]x instead of x in (3.9), we find that for all x ∈ N ,

[u1, v1]d(x)g([u1, v1]) + d([u1, v1])g(x[u1, v1])

= g([u1, v1])[u1, v1]d(x) + g([u1, v1])d([u1, v1])g(x).

In view of (3.1), (3.9) we find that

(3.10) d
(
[u1, v1]

)
N

(
g
(
x[u1, v1]

)
− g

(
[u1, v1]

)
g(x)

)
= {0} for all x ∈ N .

Since N is 3-prime, (3.10) gives

(3.11) d
(
[u1, v1]

)
= 0 or g

(
x[u1, v1]

)
= g

(
[u1, v1]

)
g(x) for all x ∈ N .

If g
(
x[u1, v1]

)
= g

(
[u1, v1]

)
g(x) for all x ∈ N , replacing x by x[u1, v1] in (3.9)

and invoking our hypothesis, we arrive at

g([u1, v1])xd([u1, v1]) = xd([u1, v1])g([u1, v1]) for all x ∈ N .

From this relation, we get

d([u1, v1])N
[
g([u1, v1]), x] = {0} for all x ∈ N .
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By the 3-primeness of N , the above expression implies that

d([u1, v1]) = 0 or xg([u1, v1]) = g([u1, v1])x for all x ∈ N .

If xg([u1, v1]) = g([u1, v1])x for all x ∈ N , then replacing x by xt in (3.9), we
find that

g([u1, v1])xd(t) = xd(t)g([u1, v1]) for all x, t ∈ N .

This implies that

g([u1, v1])N [d(t), x] = {0} for all x, t ∈ N .

Since N is 3-prime, g([u1, v1]) = 0 or d(N ) ⊆ Z(N ). By Lemma 2.3, we
conclude that g([u1, v1]) = 0 or N is a commutative ring.

If g([u1, v1]) = 0, by (3.1), we have d([u1, v1])[x, y] ∈ Z(N ) for all x, y ∈ N
and Lemma 2.1 assures that d([u1, v1]) = 0 or [x, y] ∈ Z(N ) for all x, y ∈ N . By
application of Lemma 2.5, we find that d([u1, v1]) = 0 or N is a commutative
ring. Therefore, in all cases, (3.8) becomes

(3.12) d2([u, v]) = 0 for all u, v ∈ N or N is a commutative ring.

Now, let d2([u, v]) = 0 for all u, v ∈ N . Further replacing v by uv and invoking
the fact that d(g(u)) = g(d(u)) for all u ∈ N , we get

0 = d2([u, uv])

= d2(u[u, v])

= d2(u)[u, v] + 2d(g(u))d([u, v]) + ud2([u, v])

= d2(u)[u, v] + 2d(g(u))d([u, v]) for all u, v ∈ N .

Taking [r, s] instead of u in the latter expression and using the 2-torsion freeness
of N , we obtain

d(g([r, s]))Nd([[r, s]), v]) = {0} for all r, s, v ∈ N .

By 3-primeness of N , we find that

(3.13) d(g([r, s])) = 0 or d([[r, s]), v]) = 0 for all r, s, v ∈ N .

Suppose there exist two elements r0, s0 of N such that d([[r0, s0], v]) = 0 for all
v ∈ N . Using the same techniques as used after equation (3.7), we can easily
arrive at d([r0, s0]) = 0 or [r0, s0] ∈ Z(N ). If there are two elements r1, s1 such
that d(g([r1, s1])) = 0, by definition of d and Lemma 2.6, we get

d(x)g
(
d([r1, s1])

)
+xd2([r1, s1]) = d(x)d([r1 , s1])+g(x)d2([r1, s1]) for all x ∈ N .

This yields that,

d(x)Nd([r1 , s1]) = {0} for all x ∈ N .

Since N is a 3-prime and d 6= 0, d([r1, s1]) = 0. Hence in all cases, (3.13)
becomes

(3.14) d
(
[r, s]

)
= 0 or [r, s] ∈ Z(N ) for all r, s ∈ N .
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Suppose that there exist two elements r2, s2 of N such that [r2, s2] ∈ Z(N ).
Then

0 = d2
(
[[r2, s2]u, v]

)

= d2([u, v][r2, s2])

= d2([u, v])[r2, s2] + 2d(g([u, v]))d([r2, s2]) + [u, v]d2([r2, s2])

= 2d(g([u, v]))d([r2, s2]) for all u, v ∈ N .

By 2-torsion freeness of N , the last expression implies that

d(g([u, v]))Nd([r2, s2]) = {0} for all u, v ∈ N .

Since N is 3-prime, d(g([u, v])) = 0 for all u, v ∈ N or d([r2, s2]) = 0. If
d(g([u, v])) = 0 for all u, v ∈ N , by definition of d and Lemma 2.6, we get

d(x)g(d([u, v]))+xd2([u, v]) = d(x)d([u, v])+d(x)d2([u, v]) for all u, v, x ∈ N .

This yields that

d(x)Nd([u, v]) = {0} for all u, v, x ∈ N .

By 3-primeness of N and d 6= 0, the above relation gives d([u, v]) = 0 for all
u, v ∈ N . In all cases, by (3.14) we have the remaining possibility that d([r, s]) =
0 for all r, s ∈ N . By Lemma 2.4, we conclude thatN is a commutative ring. �

The following corollaries earlier obtained in [2, Theorem 4.1] and [1, Theorem
4.1] respectively are direct consequences of Theorem 3.1.

Corollary 3.1 ([2, Theorem 4.1]). Let N be a 2-torsion free 3-prime near-ring.

If N admits a nonzero derivation d such that d([x, y]) = 0 for all x, y ∈ N ,
then N is a commutative ring.

Corollary 3.2 ([1, Theorem 4.1]). Let N be a 2-torsion free 3-prime near-

ring which admits a nonzero derivation d. Then the following assertions are

equivalent

(i) d([x, y]) ∈ Z(N ) for all x, y ∈ N .
(ii) N is a commutative ring.

It would be further interesting to know that whether Theorem 3.1 can be
proved if we replace commutator by an anti-commutator.

Theorem 3.2. Let N be a 2-torsion free 3-prime near-ring. There exists no

nonzero semiderivation d associated with an onto map g such that d(x ◦ y) ∈
Z(N ) for all x, y ∈ N .

Proof. By our hypotheses, we have

(3.15) d(x ◦ y) ∈ Z(N ) for all x, y ∈ N .

Replacing y by xy in (3.15), we find that

(3.16) xd(x ◦ y) + d(x)g(x ◦ y) ∈ Z(N ) for all x, y ∈ N .
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Application of Lemma 2.2, together with (3.16) yields that

(3.17)
xd(x ◦ y)g(z) + d(x)g((x ◦ y)z)

= g(z)xd(x ◦ y) + g(z)d(x)g(x ◦ y) for all x, y, z ∈ N .

Replacing x by d(u ◦ v)x in (3.15) and using Lemma 2.8, we find that

(3.18) d2(u◦v)N

(
g
((
x◦y

)
z
)
−g(z)g

(
x◦y

))
= {0} for all u, v, x, y, z ∈ N .

By 3-primeness of N , (3.18) implies that

(3.19) either d2(u◦v) = 0 or g
((
x◦y

)
z
)
= g(z)g

(
x◦y

)
for all u, v, x, y, z ∈ N .

Assume that

g
((
x ◦ y

)
z
)
= g(z)g

(
x ◦ y

)
for all x, y, z ∈ N .

Putting r ◦ s instead of x in (3.17) and invoking the last equation, we find that

(r ◦ s)d

(
(r ◦ s) ◦ y

)
g(z) = g(z)(r ◦ s)d

((
r ◦ s) ◦ y

))
for all r, s, y, z ∈ N ,

which implies that

(3.20) d

(
(r ◦ s) ◦ y

)
N

[
g(z), r ◦ s

]
= {0} for all r, s, y, z ∈ N .

By 3-primeness of N , (3.20) becomes

d

(
(r ◦ s) ◦ y

)
= 0 or g(z)(r ◦ s) = (r ◦ s)g(z) for all r, s, y, z ∈ N .

If there exist two elements r0, s0 of N such that g(z)(r0 ◦ s0) = (r0 ◦ s0)g(z)
for all z ∈ N , then since g is onto, we find that

(3.21) z(r0 ◦ s0) = (r0 ◦ s0)z for all z ∈ N .

Replacing x and y by r0 and s0 respectively in (3.17), we get

r0d(r0 ◦ s0)g(z) = g(z)r0d(r0 ◦ s0) for all z ∈ N .

By (3.15), the last equation becomes

d(r0 ◦ s0)N [r0, g(z)] = {0} for all z ∈ N .

Since g is onto and N is 3-prime, we arrive at

d(r0 ◦ s0) = 0 or r0 ∈ Z(N ).

If r0 ∈ Z(N ), then (3.21) becomes z(2r0s0) = (2r0s0)z for all z ∈ N which
implies that r0N [z, 2s0] = {0} for all z ∈ N . Since N is 3-prime, we find that
r0 = 0 or 2s0 ∈ Z(N ).

If r0 = 0, then d(r0 ◦ s0) = 0. Otherwise 2s0 ∈ Z(N ). Using (3.15), we have
d((2s0)(2s0)) = d(2s0 ◦ s0) ∈ Z(N ). This yields that

(2s0)d(2s0) + d(2s0)g(2s0) ∈ Z(N )
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that is,
{
(2s0)d(2s0) + d(2s0)g(2s0)

}
g(z)

= g(z)

{
(2s0)d(2s0) + d(2s0)g(2s0)

}
for all z ∈ N .

By a simple calculation and applications of Lemmas 2.2 & 2.6, we find that

d(2s0)N
(
g((2s0)z)− g(z)g(2s0)

)
= {0} for all z ∈ N .

Since N is 3-prime, we find that

d(2s0) = 0 or g((2s0)z) = g(z)g(2s0) for all z ∈ N .

By 2-torsion freeness of N , we obtain

d(s0) = 0 or g((2s0)z) = g(z)g(2s0) for all z ∈ N .

If g((2s0)z) = g(z)g(2s0) for all z ∈ N , then by (3.15) we have d((2x2)(2s0) =
d((2s0) ◦ x2) ∈ Z(N ) for all x ∈ N . Another time by a simple calculation and
using Lemmas 2.2 & 2.6, we conclude that

d(2s0)N [2x2, g(z)] = {0} for all x, z ∈ N .

Since g is onto, by 3-primeness of N , we obtain d(s0) = 0 or 2x2 ∈ Z(N ) for
all x ∈ N . If 2x2 ∈ Z(N ) for all x ∈ N , then 2x4 = x2(2x2) ∈ Z(N ) for all
x ∈ N , and hence by Lemma 2.1, 2x2 = 0 or x2 ∈ Z(N ). But 2x2 = 0 gives
x2 = 0 ∈ Z(N ), which implies that x2 ∈ Z(N ) for all x ∈ N . In this case
(3.15) implies

d((2y2)x2) = d(x2 ◦ y2) ∈ Z(N ) for all x, y ∈ N ,

and hence by definition of d, the latter expression becomes

2y2d(x2) + d(2y2)g(x2) ∈ Z(N ) for all x, y ∈ N .

In view of Lemma 2.2 this yields that

2y2d(x2)g(z) + d(2y2)g(x2z)

= g(z)2y2d(x2)g(z) + g(z)d(2y2)g(x2) for all x, y, z ∈ N .

Using Lemma 2.8 and the fact that 2y2 ∈ Z(N ) for all y ∈ N , we arrive at

d(2y2)N
(
g(x2z)− g(z)g(x2)

)
= {0} for all x, y, z ∈ N .

By 3-primeness of N , we obtain

(3.22) d(2y2) = 0 or g(x2z) = g(z)g(x2) for all x, y, z ∈ N .

Suppose that g(x2z) = g(z)g(x2) for all x, z ∈ N . By (3.15), we have

d((u ◦ v)x2) = d(uvx2 + vux2) = d(u ◦ vx2) ∈ Z(N ) for all x, u, v ∈ N .
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This yields that (u ◦ v)d(x2) + d(u ◦ v)g(x2) ∈ Z(N ) for all x, y, z ∈ N , and by
Lemma 2.2 the latter expression reduced to

(u ◦ v)d(x2)g(z) + d(u ◦ v)g(x2z)

= g(z)(u ◦ v)d(x2) + g(z)d(u ◦ v)g(x2) for all x, u, v, z ∈ N .

This implies that

d(x2)N [u ◦ v, g(z)] = {0} for all x, u, v, z ∈ N .

Since N is 3-prime and g is onto, we conclude that d(x2) = 0 or u ◦ v ∈ Z(N )
for all x, u, v ∈ N , which shows that equation (3.22) becomes

d(x2) = 0 or u ◦ v ∈ Z(N ) for all x, u, v ∈ N .

If u ◦ v ∈ Z(N ) for all u, v ∈ N , by Lemma 2.9, we conclude that N is a
commutative ring. Otherwise, by (3.15) we have x2d(y + y) ∈ Z(N ) for all
x, y ∈ N . By Lemma 2.1, we obtain

x2 = 0 or d(y + y) ∈ Z(N ) for all x, y ∈ N .

If x2 = 0 for all x ∈ N , then x(x + y)2 = 0 for all x, y ∈ N . Hence by the
simple calculation, we obtain that xyx = 0 for all x, y ∈ N and by 3-primeness
of N , we conclude that x = 0 for all x ∈ N ; a contradiction.

If d(y + y) ∈ Z(N ) for all y ∈ N , replacing y by ys0 we get d(y(s0 + s0)) =
yd(2s0) + d(y)g(2s0) ∈ Z(N ) for all y ∈ N , and by Lemma 2.2 the last upshot
implies that

yd(2s0)g(z) + d(y)g((2s0)z) = g(z)yd(2s0) + g(z)d(y)g(2s0) for all y, z ∈ N .

Using the fact that g((2s0)z) = g(z)g(2s0) for all z ∈ N , the last expression
becomes

d(2s0)N [y + y, g(z)] = {0} for all y ∈ N .

Since N is 3-prime and g is onto, we find that d(2s0) = 0 or y + y ∈ Z(N ) for
all y ∈ N . If d(2s0) = 0 by 2-torsion freeness we get d(s0) = 0. If y+ y ∈ Z(N )
for all y ∈ N , then taking y2 instead of y, we get y(y+y) ∈ Z(N ) for all y ∈ N
and by Lemma 2.1, we arrive at y + y = 0 or y ∈ Z(N ) for all y ∈ N . Since
N is 2-torsion free, in both the cases we arrive at y ∈ Z(N ) for all y ∈ N .
This implies that N ⊆ Z(N ). Hence by Lemma 2.7, we conclude that N is a
commutative ring.

Suppose there exist two elements r1, s1 of N such that

d
(
(r1 ◦ s1) ◦ y

)
= 0 for all y ∈ N .

Substituting (r1 ◦ s1)y for y, we obtain

d
(
r1 ◦ s1

)(
(r1 ◦ s1) ◦ y

)
+ g(r1 ◦ s1)d

((
r1 ◦ s1) ◦ y

)
= 0 for all y ∈ N .

In view of (3.15), the above yields that

d(r1 ◦ s1)N

(
(r1 ◦ s1) ◦ y

)
= {0} for all y ∈ N .
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Since N is 3-prime, the last relation implies that

(3.23) d
(
r1 ◦ s1

)
= 0 or (r1 ◦ s1) ◦ y = 0 for all y ∈ N .

Suppose that

(3.24) (r1 ◦ s1) ◦ y = 0 for all y ∈ N .

Thus in view of (3.24) we have d(y(r1 ◦ s1)) = −d((r1 ◦ s1)y). By definition
of d and Lemma 2.6, we have

d(y)(r1 ◦ s1) + g(y)d(r1 ◦ s1) = −(d(r1 ◦ s1)g(y) + (r1 ◦ s1)d(y))

= −(r1 ◦ s1)d(y)− d(r1 ◦ s1)g(y) for all y ∈ N ,

which implies that

(r1 ◦ s1) ◦ d(y) + 2g(y)d(r1 ◦ s1) = 0 for all y ∈ N .

This yields that

2g(y)d(r1 ◦ s1) = 0 for all y ∈ N .

Since N is 2-torsion free and g is onto, we find that

yNd(r1 ◦ s1) = {0} for all y ∈ N .

Since N is 3-prime, we conclude that d(r1 ◦ s1) = 0. Thus in all cases, we find
that d(u1◦v1) = 0. Returning to (3.19), we obtain d2(u◦v) = 0 for all u, v ∈ N .
Replacing v by uv and invoking the fact that d(g(u)) = g(d(u)) for all u ∈ N ,
we get

0 = d2(u ◦ uv)

= d2(u(u ◦ v))

= d2(u)(u ◦ v) + 2d(g(u))d(u ◦ v) + ud2(u ◦ v)

= d2(u)(u ◦ v) + 2d(g(u))d(u ◦ v) for all u, v ∈ N .

Taking r ◦ s instead of u in the last expression and using 2-torsion freeness of
N , we obtain

d(g(r ◦ s))Nd((r ◦ s) ◦ v) = {0} for all r, s, v ∈ N .

Again, 3-primeness of N gives

(3.25) d(g(r ◦ s)) = 0 or d((r ◦ s) ◦ v) = 0 for all r, s, v ∈ N .

If there are two elements r0, s0 of N such that d((r0 ◦ s0) ◦ v) = 0, using
the same techniques as used after equation (3.22), we can easily obtain that
d(r0 ◦ s0) = 0.

Now suppose there exist two elements r1, s1 of N such that d(g(r1◦s1)) = 0.
By definition of d and Lemma 2.6, we get

d(x)g
(
d(r1 ◦s1)

)
+xd2(r1 ◦s1) = d(x)d(r1 ◦s1)+g(x)d2(r1 ◦s1) for all x ∈ N .

This leads to

d(x)Nd(r1 ◦ s1) = {0} for all x ∈ N .
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Since N is a 3-prime and d 6= 0, d(r1 ◦ s1) = 0. Hence, in all cases, we arrive
at d(r ◦ s) = 0 for all r, s ∈ N . Replacing s by rs and using the definition of d,
we get d(r)(r ◦ s) = 0 for all r, s ∈ N , it follows that d(r)rs = −d(r)sr for all
r, s ∈ N . Putting st instead of s we arrive at

d(−r)N (−tr + rt) = {0} for all r, t ∈ N .

This yields that d(r) = 0 or r ∈ Z(N ) for all r ∈ N .
If there is an element r0 ∈ N such that r0 ∈ Z(N ), then by 2-torsion

freeness of N , we have d(sr0) = 0 for all s ∈ N and by definition of d, we
find that sd(r0) + d(s)g(r0) = 0 for all s ∈ N . Now replacing s by sr0, we
arrive at r0sd(r0) = 0 for all s ∈ N and by 3-primeness of N , we conclude that
d(r0) = 0. Finally, d(r) = 0 for all r ∈ N ; a contradiction. This completes the
proof of the theorem. �

The following corollaries are the immediate consequences of the above the-
orem.

Corollary 3.3. Let N be a 2-torsion free 3-prime near-ring. There exists no

nonzero semiderivation d of N such that d(x ◦ y) = 0 for all x, y ∈ N .

Corollary 3.4. Let N be a 2-torsion free 3-prime near-ring. There exists no

nonzero derivation d of N such that d(x ◦ y) = 0 for all x, y ∈ N .

Corollary 3.5. Let N be a 2-torsion free 3-prime near-ring. There exists no

nonzero derivation d of N such that d(x ◦ y) ∈ Z(N ) for all x, y ∈ N .

Corollary 3.6. Let N be a 2-torsion free 3-prime near-rings which admits a

nonzero semiderivation d. Then N is commutative if and only if d(xy) ∈ Z(N ).

Theorem 3.3. Let N be a 2-torsion free 3-prime near-ring which admits a

semiderivation d associated with a map g. Then the following assertions are

equivalent:

(i) d([x, y]) + x ◦ y ∈ Z(N ) for all x, y ∈ N .
(ii) d([x, y])− x ◦ y ∈ Z(N ) for all x, y ∈ N .
(iii) N is a commutative ring.

Proof. It is easy to verify that (iii)⇒(i) and (iii)⇒(ii).
(i)⇒(iii). Assume that

(3.26) d([x, y]) + x ◦ y ∈ Z(N ) for all x, y ∈ N .

For x = y, (3.26) becomes 2x2 ∈ Z(N ) for all x ∈ N which implies that
x2 ∈ Z(N ) for all x ∈ N . In this case, replacing x by x2 in (3.26), we get

(3.27) x2(y + y) ∈ Z(N ) for all x, y ∈ N .

By Lemma 2.1, (3.27) gives

x2 = 0 or y + y ∈ Z(N ) for all x, y ∈ N .
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If x2 = 0 for all x ∈ N , then x(x + y)2 = 0 for all x, y ∈ N . By the simple
calculation, we obtain xyx = 0 for all x, y ∈ N and by 3-primeness of N , we
conclude that x = 0 for all x ∈ N ; a contradiction.

If y+ y ∈ Z(N ) for all y ∈ N , then taking y2 instead of y, we get y(y+ y) ∈
Z(N ) for all y ∈ N and by Lemma 2.1, we arrive at y + y = 0 or y ∈ Z(N )
for all y ∈ N . Since N is 2-torsion free, in both cases give y ∈ Z(N ) for all
y ∈ N which implies that N ⊆ Z(N ). By Lemma 2.7, we conclude that N is
a commutative ring.

(ii)⇒(iii). Using the same techniques as we have used in the proof of
(i)⇒(iii), we find that N is a commutative ring. �

Remark. The results in this paper remain true for right near-rings with the
obvious variations.

The following example shows that the hypothesis “2-torsion free” is an es-
sential condition in Theorems 3.1 & 3.2.

Example 3.1. Let N = M2(Z2) and d be the inner derivation induced by

the element

(
0 1
0 0

)
. Then N is a non-commutative prime ring and d

(
a b

c d

)
=

(
c d+a

0 c

)
. It is easy to verify that d([A,B]) ∈ Z(N ) and d(A ◦ B) ∈ Z(N ) for

all A,B ∈ N . But N is not 2-torsion free.

Example 3.2. Let N = M2(Z3) and d be the inner derivation induced by

the element

(
0 1
0 0

)
. Then N is a non-commutative 2-torsion free prime ring

and d

(
a b

c d

)
=

(
c d−a

0 −c

)
. Take x =

(
1 1
1 1

)
, y =

(
0 1
0 1

)
. Then d([x, y]) =

(
2 2
0 1

)
/∈ Z(N ) and d(x ◦ y) =

(
1 2
0 2

)
/∈ Z(N ) which show that the condition

”d([x, y]) ∈ Z(N ) for all x, y ∈ N” in Theorem 3.1, the condition d(x ◦ y) ∈
Z(N )” in Theorem 3.2 are not superfluous.

The following example demonstrates that the 3-primeness of N in the above
theorems can not be omitted.

Example 3.3. Let S be a 2-torsion free zero-symmetric left near ring and let

N =

{


0 x y
0 0 0
0 z 0


 | x, y, z ∈ S

}
.

Define d, g : N → N by

d




0 x y
0 0 0
0 z 0


 =




0 x y
0 0 0
0 0 0


 and g




0 x y
0 0 0
0 z 0


 =




0 y x
0 0 0
0 z 0


 .
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Then it can be seen easily that N is a zero-symmetric left near-ring which is
not 3-prime and the maps d is a semiderivation on N associated with an onto
map g satisfying all the requirements of Theorems 3.1 & 3.2. However, N is
not a commutative ring.
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