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Abstract 
 

Due to growing demand on wireless data traffic, a large number of different types of base 

stations (BSs) have been installed. However, space-time dependent wireless data traffic 

densities can result in a significant number of idle BSs, which implies the waste of power 

resources. To deal with this problem, we propose an active state control algorithm based on 

semi-Markov decision process (SMDP) for a heterogeneous network. A MDP in discrete time 

domain is formulated from continuous domain with some approximation. Suboptimal on-line 

learning algorithm with a random policy is proposed to solve the problem. We explicitly 

include coverage constraint so that active cells can provide the same signal to noise ratio (SNR) 

coverage with a targeted outage rate. Simulation results verify that the proposed algorithm 

properly controls the active state depending on traffic densities without increasing the number 

of handovers excessively while providing average user perceived rate (UPR) in a more power 

efficient way than a conventional algorithm.  
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1. Introduction 

As mobile data traffic data increases in a cellular network, the density of cells increases to 

provide satisfactory wireless service. In the past, micro cells or pico cells were installed to deal 

with this problem. Nowadays, including femto cells, the various types of cells are deployed, 

which constitutes a heterogeneous cellular network. As the cellular system evolves, variety of 

heterogeneities occurs. Especially internet of things (IOT) is likely to have great impact on the 

architecture of a next generation cellular system. In the perspective of cellular systems, more 

heterogeneous cells are likely to appear. Severe heterogeneity in cells may incur several 

critical issues such as load balancing, handover, and inter-cell interference. Thus, controlling 

cellular system parameters to optimize some performance for heterogeneous networks will be 

a very difficult task.  

  As a large number of cells are installed in a system, managing cells in an energy-efficient 

way also lays down some issues. The energy consumption incurred by cellular systems is 

known to take several tenths percentage of the world's energy consumption [1]. To address the 

energy-efficiency more systematically, energy efficiency evaluation framework (E3F) was 

developed [2]. According to the model of base station (BS) power consumption [3], power 

amplifier usually consumes 55-60% of the overall power at full load for macro cells while 

around 30% for small cells. Power control at BSs can be broadly classified into transmit power 

control for interference control to improve quality of service (QoS) and active power state 

control for energy efficiency (EE). The former may help to reduce power consumption 

marginally. Thus, it is expected that active state control with consideration of QoS need to be 

developed to deal with energy-efficient operation with respect to a given cell load condition. 

  Several researches on this problem have been conducted for the past few years. A joint 

active state control and cell association which was mapped to Knapsack-like problem was 

proposed to minimize total energy used in the network [27]. Since a brute-force optimal BS 

control has exponential complexity with the number of BSs, many of them take a form of a 

greedy algorithm [4][8][17][19]. In [8], an active set control was applied to a subset of BSs to 

support peak traffic while others being turned on always. Starting with all BSs being in active 

state, a dynamic cell reconfiguration algorithm to minimize the total power with constraint on 

cell load sequentially switches off BSs in a greedy way [19].  Discontinuous transmission 

schemes were also considered as an energy efficient scheme [7][18]. In [7], BSs were switched 

off to save energy in sacrifice of transmission delay without offloading the mobile traffics 

while optimal delay was sought with the cost function of average delay and average power in 

[18]. Some novel methods were also introduced [5][10]. Ecological self-organization based 

method for distributed inter-BS cooperation heuristically switches off a BS when cell load is 

below a certain threshold while it is turned on by the request of surrounding neighbor cells 

which request load sharing [10]. Tabu search was exploited to find an active BS set which 

provides the best BS-RS(relay station) association minimizing energy consumption under a 

QoS constraint [5]. Some simple methods such as choosing one from the predefined sets of 

active BSs based on mobile traffic density [6] and determining active state from using average 

distance between mobile stations (MSs) and a BS [11] were also developed.  

  Active state control can be formulated into a sequential decision problem. One of the most 

efficient methods for solving sequential decision problem is to exploit the framework of 

Markov decision process (MDP). There are several researches to apply MDP to wireless 

network optimization problems such as call admission control for multiple radio access 
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technologies (RATs) [12][14], and joint radio resource management [13]. Only a few are 

closely related to the network optimization for EE. Femto cell active control in a 

heterogeneous network using MDP for a very specific model tried to minimize total power 

from maximizing total reward [16]. Delay-optimal control of BS discontinues transmission 

was formulated into partially observable MDP (POMDP) with the cost function of average 

delay and average power rather than focusing on energy-efficient operation [18].  

 There are two important limitations in existing related research. First, many of them focus 

on homogeneous network in which the effect of different coverage is not considered properly. 

There are some researches for heterogeneous networks. However, most of them have been 

studied for controlling the active state of the single type of cells. A policy for controlling the 

sleep mode of small cells in a heterogeneous network based on stochastic geometry was 

developed to maximize energy efficiency (EE) in [23]. Algorithms for Switching on/off macro 

cells in a heterogeneous network have been developed to improve EE in [24] and to have a 

tradeoff between EE and the cost of mobile network operators (MNOs) with a combinational 

auction framework in [25]. Second, many existing algorithms do not consider broadcasting 

coverage for signaling channel when active state is controlled. One common assumption in 

existing research on energy-efficient optimization of a wireless network is that all MSs are in 

the coverage of some cells regardless of the number of active cells. However, this can be 

hardly true in a realistic network environment. This can be more problematic especially in a 

heterogeneous network environment where small cells and macro cells co-exist. In [8], the 

coverage of wireless network was explicitly considered in active state control. However, it is 

required to verify whether it satisfies the coverage condition whenever it switched off a BS, 

which could not be implemented in a realistic system due to the instability of service. An 

optimal density of micro BSs and macro BSs for energy-efficient operation in consideration of 

coverage constraint was also calculated numerically from using stochastic geometry theory 

[15]. However, a method for controlling the active state of each cell in consideration of cell 

coverage jas not been developed to the best of author's knowledge. 

 In this paper, we propose an ASC algorithm from the framework of semi-MDP (SMDP) in a 

heterogeneous network to have energy-efficient operation satisfying coverage constraint. It 

starts with learning channel environment from the measurement report of each MS to know the 

feasible set for active state control satisfying coverage condition. Then, it learns whether BS 

can be switched off or on depending on cell load.  

  The rest of the paper is organized as follows. A system model is given in section 2. In section 

3, a problem is formulated in terms of power of each cell and coverage constraint. In section 4, 

the framework of SMDP for minimizing power with coverage constraint which approximately 

transforms a problem in the continuous domain into one in the discrete domain is developed 

with defining associated cost, transition probabilities, actions, and states. Since the transition 

probabilities are not available in a closed form, on-line reinforcement learning algorithm was 

introduced in section 5. In section 6, simulation setups are specified, and the performances of 

the proposed ASC algorithm are verified through numerical simulation. We make some 

concluding remarks in section 7. 

2. System Model 

We consider a heterogeneous downlink multi-cell system with frequency reuse-1 where the 

different types of cells exist in a system. For simplicity, the two types of cells, macro cells and 

small cells, are considered without loss of generality throughout this paper. There are MCN
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macro cells and SCN  small cells. Each BS may have a single sector or multi-sector depending 

on network design. With slight abuse of terminology, we call a sector as a cell throughout this 

paper. We make several assumptions to restrict the scope of this research and elucidate 

considered system setup. 

  Every BS has only one transmit antenna to be free from dependency on the types of 

multi-input multi-ouput (MIMO) techniques and to focus on the characterization of the ASC 

algorithm. We differentiate macro cell and small cell depending only on transmit power. Each 

BS is perfectly synchronized to common clock such as global positioning system (GPS) so that 

there may not be synchronization error in the received signal of MS. Likewise, each MS keeps 

perfect synchronization to its serving BS, and has perfect channel estimation. There exists a 

centralized processor which gathers perfect information on loading of each cell and controls 

its active state. There may be some uncertainty on this information due to delay and estimation 

error in practice. However, it may not have significant effect on the performance since active 

state control is likely to be done on long-term basis such as order of minutes or hours, and 

averaging out cell load over sufficient time interval may provide stable statistics.  

  One of important factors influencing cell load is a mobile traffic distribution. The arrival of 

mobile traffic is assumed to follow Poisson point process with arrival rate per unit area   

where the size of each traffic is exponentially distributed with mean ./1  Consequently, the 

traffic density   can be calculated as ./  For simplicity, we focus on homogeneous 

mobile traffic which can be readily extended to inhomogeneous case by making it dependent 

on location. A system load density associated with the cell c  can be defined as follows [4][5]. 

),(
),(

ONc

ONc
Fzr

Fz


                                                (1) 

where ONF  is a set of active cells, and ),( ONc Fzr is the achievable transmission rate with the 

quality of radio frequency channel at location z  served by the cell .c  Exploiting (1), one can 

define loading of the cell c
 
as follows. 

 R
cONcc dzzqFzL )(),(                                              (2) 

where )(zqc  is the probability distribution of being associated with the cell c  at location z , 

and R  is the region of the system. )(zqc  will be 0 if location z  is out of coverage of the cell 

.c  

  Cell coverage usually depends on signal to noise ratio (SNR) or signal to interference plus 

noise ratio (SINR). For simplicity, we consider SNR as a measure for defining coverage 

throughout this paper. Let )(zEC  be the event that maximum signal to noise ratio (SNR) over 

cells belonging to the set C  is less than T  at location z  when they are active. The 

probability of this event can be expressed as  




 
Cc

TcTcCcC zzzE ))(Pr())(Pr(max))(Pr(                          (3) 

where )(zc  is the SNR of the signal received from the cell .c  Exploiting this probability, 

one may define a feasible set collection F consisting of the sets of active cells which support 

outage level   over the region R  in the following way. 

})())(Pr(|{  R ZFi dzzfzEFF
i

                                       (4) 
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where )(zfZ  is a geometric traffic density. Active set control problem in terms of minimizing 

total power with outage constraint can be formulated as  

 
ii Fc cFF Pmin                                                    (5) 

where cP  is the power consumption of the cell .c  Even though the solution of this problem 

provides the minimization of total transmit power, quality of service (QoS) may not be good 

enough to be chosen as a practical solution. One may alternatively add loading constraint to 

balance the traffic and provide QoS.  

  
iii Fc TccFc cFF LLP )(min                                    (6) 

where c  is a nonnegative constant parameter,
 
and TL  is the allowable maximum loading at 

each cell. It is noted that computing the optimal solution to (5) or (6) is a combinatorial 

problem which necessitates the exponential computational  complexity with the number of 

cells. Throughout this paper, we will propose a suboptimal solution to tackle this problem with 

moderate complexity. We also provide the description of notations and summary of used 

acronyms and corresponding their meaning in Table 1 and Table 2 respectively.  

 

 
Table 1. The description of Notations. 

Notation Description 

MCN  Number of macro cells 

SCN  Number of small cells 

  arrival rate per unit area 

./1   Average traffic size 

  Traffic density 

c  System load density associated with a cell c 

cL  Cell load at a cell c 

cP
 

power consumption of the cell .c  


 

a positive discount parameter for defining cost in a 

continuous time domain  

MCl
 

the average cell loads of macro cell type 

SCl
  

the average cell loads of small cell type 

MCs
 

the discrete cell load states of macro cell type 

SCs
 

the discrete cell load states of small cell type 

HT
 

thresholds for high cell load 

LT
 

thresholds for low cell load 

  Outage threshold 
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Table 2. Summary of used acronyms and corresponding their meaning. 

Acronyms Description 

BS Base Stations 

MDP Markov Decision Process 

SMDP Semi-Markov Decision Process 

SNR Signal to Noise Ratio 

UPR User Perceived Rate  

ASC
 

Active State Control 

MS
 

Mobile Station 

SCM Spatial Channel Model 

3GPP
 

The 3rd Generation Partnership Project 

HO
 

Hand Over 

M-GOFF
  

Modified Greedy OFF 

3. Problem Formulation 

In this section, we formulate semi-Markov decision process for controlling active state of cells. 

One can easily find that the solution of (5) will be the same regardless of mobile traffic 

conditions. This means that it depends only on the geometry of system environment. This 

solution may not be a good working solution when there is space-time variation in the vloume 

of data traffic. The solution of (6) may provide a trade-off between the power minimization 

and cell load balancing. We will implicitly exploit this fact to formulate the problem in terms 

of semi-Markov decision process. 

  Let kx  kt , ka  be state, continuous time, and action at time step ,k  respectively. A transition 

distribution can be expressed as  

),|,{),( 11, aaixjxttPaT kkkkkji   
 
                            (7) 

With simple manipulation, this distribution can be expressed as  

)|(),( ,,, afPaT jijiji                                                   (8) 

where ),,|{)|( 11, aajxixttPaf kkkkkji     and transition probability ),(, aP ji 

= ).,(lim ,, aTP jiji   One can define total discounted cost with policy ],,[ 10 aa  

starting from state i  as follows 
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where ),( kk axg  is cost per stage which is assumed to be constant for an interval ],,[ 1kk tt  and 

  is a positive discount parameter in continuous time domain. )(iC  can be decomposed into 

two parts, expected single stage cost ))(,( 0 iaiG  and expected cost to go from the next state 

[20]. 
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  and SN  is 

the number of states. The second term in the right side of (10) can be further calculated by 
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where 
 
0

, ))(|())((ˆ iadfeia ojioij   . (10) can be rearranged by using (11) as  

)())((ˆ))(,()(
1

1

0 jCiaPiaiGiC
SN

j

oijij  


                                   (12) 

Even though this equation appears to be same as the system equation of discrete MDP, it is not, 

since summing ))((ˆ iaP oijij over j is not equal to 1. Thus, we derive the system equation of 

Markov decision process with discounted cost from the upper bound of ))((ˆ iaP oijij .  

)())(,()(
1

1

0 jCPiaiGiC
SN

j

ij  


                                     (13) 

)(ˆmax },,|),,{( aijSjAaSijai                                         (14) 

For instance, if transition time follows exponential distribution with the transition rate of 

)(abij , then   can be determined as ))(/(1max },,|),,{( abijSjAaSijai   . Setting   as in (14), 

we can find the relationship between   and   with the following proposition.  

Proposition-1 :   is monotonically non-increasing with  . 

Proof : since ))((ˆ iaoij  is monotonically non-increasing with .  The maximum of ))((ˆ iaoij  

over },,|),,{( SjAaSijai   is also monotonically non-increasing. 

This proposition implies that larger   is equivalent to smaller   in continuous time domain. 

That is, setting   larger in discrete domain means to consider future cost more aggressively 

in continuous time domain.  

  An expected single stage cost ))(,( 0 iaiG  can be upper bounded with approximation in the 

following way. 
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where }.),(,|{))(())((
1

00 jiaiEiaPia o

n

j

iji  





 In (15), inequality and approximation come 

from Jensson's inequality and Taylor series expansion respectively. It is noted that the 

approximation is valid when }),(,|{ jiaiE o  is close to 0. 
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4. Markov Decision Process for Active State Control 

In this section, we explicitly define the elements of the MDP for active state control in a 

heterogeneous network. A MDP is described as a tuple  CTAS ,,,  where S  is a set of 

states, A  is a set of actions, },,|)({ SjAaSiaPT ij   is a set of transition probabilities, 

and  ASC :  is a cost function. In MDP, a next state and cost depend only on the current 

state and the chosen action which represents Markov property. An ASC problem can be 

formulated in many different ways with MDP by defining the elements of the MDP differently. 

It is known that MDP can have the curse of dimensionality with a large number of states. Thus, 

the proposed MDP will be constructed such that it can be implemented with moderate 

complexity. 

  State information is usually used for determining an action. One may determine the active 

state of each cell based on the active states of other cells, loading of each cell, the number of 

MSs in the system, and so forth. Theoretically considering every possible variable to 

determine a state may provide the best performance. However, it can lead to huge complexity 

and excessive convergence time if some parameters need to be learned. Thus, we define a state 

from a two-dimensional vector ),( SCMC ll
 
where MCl  and SCl  represent the average cell loads 

of macro cells and small cells. Since the decision of the active state of each cell is closely 

related to average cell load, this information is taken as state information. Even though the 

state has only two dimensions, the number of state can be infinite if it takes a continuous value. 

Thus, we consider a discretized state space in the following way. 

}},,{,|),{( LMHssssS SCMCSCMC                                  (16) 

where MCs  and SCs  are the discrete cell load states of macro cells and small cells, and " H ", "

M ", and " L " represent three cell load states depending on average cell load. There is no strict 

rule to define the cell load state. It may depend on the goal of system operation and service 

management scheme. In this paper, this will be set by defining the interval of cell load for 

determining cell load state. 

                                    















otherwiseM

TlifL

TlifH

s Li

Hi

i

,

,

,

                                                   (17) 

where HT  and LT  are thresholds for high cell load and low cell load respectively, and 

}.,{ SCMCi  

  For active state control, the action space may be simply defined as turning on and turning off. 

However, since we are interested in a heterogeneous system, we distinguish them depending 

on the types of cells. Consequently, the action space can be defined as  

}},,,{|{ OffSOffMOnSOnMaaA                                 (18) 

where ,,, OffMOnSOnM  and OffS   represents "Turn on a macro Cell", "Turn on a 

small cell", "Turn off a macro cell", and "Turn off a small cell" respectively. One may have 

more refined action space such that it can include a set of cells which need to change their 

active states. However, it will make MDP too complicated. Thus, the decision of this set will 

be done rather heuristically which will be defined in a subsequent section.  

  Taking an action for a current state incurs cost. Even though an objective function is given in 

(6), it cannot be directly used since it requires the parameter decision of c . In addition, active 

state depends on cell load condition. There can be infinite number of ways to define this 

function while the systematic method of constructing this function is never known to the best 
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of authors' knowledge. Thus, from the observation that it is reasonable to control the active 

state of a cell based on cell loads, the single stage cost is proposed as follows. 

)}),((*,),,*),((),),((*,),,*),{((

)}),{((*,)},,*),{((

)}),{((*,)},,*),{((

5.0
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ONSLONMLOFFSHOFFMHG

OFFSLGOFFMLG

ONSHGONMHG
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









   (19) 

where },|),{( AaSaG  ss


  In (20), 
G  denotes a set of state and action pairs of which 

single stage cost is  , and * means that any state in the state space can be allowed. Cost is 

designed such that it can have value between -0.5 and 0.5. Cost, 0.5 is assigned to the 

state-action pairs which are not desired to happen. Cost of turning on a cell in the case of high 

average cell load is designed to decrease linearly with average cell load, while cost of turning 

off a cell in the case of low average cell load linearly increases with average cell load. No cost 

is defined for the state ),,( MM
 
since it is considered as a terminal state.. 

   For the approximate MDP defined in (13), a set of system equation for optimality can be 

defined as [20].  

  

'

*
,'

* )]'()(),([min)(
s

ss ssss SforVaPaGV Aa                        (20) 

where )(sV

 

is called as a value function. This is a Bellman equation for MDP. Corresponding 

optimal policy 
*  can be expressed as  

  

'

*
,'

* )]'()(),([minarg
s

ss sss SforVaPaGAa                       (21) 

This equation is usually solved through value iteration or policy iteration [20]. To do so, 

knowledge on transition probability is required. However, this information is not available in 

the given problem formulation. When this information is not available, heuristic algorithm or 

learning algorithm can be an alternative. 

 

5. Reinforcement learning for Active State Control 

Some learning algorithms are known to converge to optimal solution for some conditions [21]. 

These learning algorithms are broadly classified into off-line and on-line algorithms. Since 

off-line algorithm requires precise modeling of physical environment, and its performance 

may degrade in the presence of model mismatch, we focus on on-line learning algorithm.   

  To derive on-line learning algorithm, first, we have to define a Q-factor ),( aQ s  which is also 

often called as an action-value function. Bellman equation for an optimal Q-factor ),(* aQ s  

can be expressed as 

AaandSforaQaPaGaQ Aa    ,)','(min],|'[),(),(
'

*
'

*

s

ssssss         (22) 

One of the most efficient algorithm to approximate ),(* aQ s  is Sarsa algorithm[22]. This 

algorithm updates Q-value and policy at each step [22]. A updating equation for Sarsa 

algorithm at the k th step is given as 

)),(),(),((),(),( 11 kkkkkkkk aQaQaGaQaQ sssss                      (23) 

where   is a step size which determines averaging width. At each step, once the current state 

and action are given, associated single stage cost and next state can be determined. The action 
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of the next stage can be decided from a given policy. Policy may be updated at each step with 

updated Q-value if necessary. This procedure is repeated at every step. Convergence is 

guaranteed with  -greedy policy if all state-action pairs are visited with asymptotically large 

number of times [21]. 

  At each step, an action needs to be determined from a policy. The policy is a mapping from a 

state to an action. We adopt a heuristic random policy which combines a deterministic policy 

and a softmax policy.  
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The proposed policy exploits a softmax policy for the states consisting of the combination of 

L  and H  while it does a deterministic policy for other states. It is noted that the softmax 

policy is applied to the case that there is ambiguity in choosing a proper action for a given state. 

On the contrary the deterministic policy is applied to the states for which proper action is 

intuitively clear. For example, when ),( LLs  it is quite reasonable to turn off a macro cell or 

a small cell to lower average cell load. But it is unclear whether it will be better to turn on a 

macro cell or a small cell. Thus, a softmax policy probabilistically determines which action is 

going to be taken.  

  The action determined by the reinforcement algorithm does not specify the set of cells to be 

controlled at each stage. For simplicity, we set the maximum number of cells to change its 

active state as 1. For the purpose of load balancing, it will be advantageous to turn on the 

power of a cell of which neighbors are heavily loaded.  
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where },,{ SCMCy   yjP ,  represents the active state of the cell j  
of type y  which takes the 

value 0 for being turned on and 1 for being turned off,  and iW
 
is the set of neighbor cells of 

cell i  which is defined more explicitly later. (25) selects a cell with the largest loading 

averaged over its neighbor cells. Similarly, the cell to be turned off will be determined as 

follows.  
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where }ˆ,0|{
),'(

,' ij

Cyj

yjji YCPCY

j

 


, and  iŶ  is the collection of the neighbor supporter 

sets which is defined in section 6. (26) simply selects a cell with the lowest loading averaged 

over its neighbor cells among cells which can be turned off safely with satisfying the coverage 

constraint. 

  The complexity of ASC algorithm depends on the reinforcement learning algorithm and the 

algorithm for selecting a cell to be turned on or off expressed in (25) and (26). The complexity 

of reinforcement learning algorithm itself is  [28]. Since the number of neighbor cells and the 

number of active or inactive cells are proportional to the number of cells. The complexity due 

to (25) and (26) will be  . Associated with this algorithm no extra signaling is required. 

However, the cell load of each cell needs to be collected at a centralized processor every 

period of load balancing algorithm, which is likely to be very minor overhead. 
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6. Simulation Results 

6.1 Simulation Setup 

We consider a conventional wrap-around hexagonal downlink network consisting of 57 

macro cells where three cells are co-located as three sectors with nominal coverage of 120 

degree and randomly located SCN  omni-directional small cells. Following conventional 

transmit power setup [3][26], the transmit powers of the macro cells and the small cells are set 

to be 20 watt and 1 watt respectively. Since we treat each sector as a cell, the total number of 

cells is 57 SCN . Each cell transmits signal with a single antenna. Each MS with two 

receiving antenna executes maximum ratio combining over received signal. Channel model 

follows the urban micro model of 3GPP SCM with non-line of sight. The number of MSs are 

10 per macro cell at the start of simulation. They are geometrically randomly distributed with 

uniformly distributed velocity. That is, the m th MS has velocity

 

m)570/100( . Each MS 

moves along a straight line with a random direction.     

  The average data traffic size for each call arrival was set to be 1k bits. Discount factor 

was set as 0.9. HT

 

and LT  were 0.9 and 0.7 to make the cell load of each active cell rather high 

so that it can operate in a power-efficient manner. Simulation was executed over 50000 frames 

where frame length was 1 sec. For the first 10000 frames, feasible neighbor sets for supporting 

the coverage of each cell were estimated. Learning algorithm was executed over 40000 frames 

with the period of 10 frames. The practical active state control may be executed every several 

minutes or several tens of minutes. However, since it is important to include the effect of the 

short-term channel characteristics which is closely related with velocity of channel and the 

quality of service, we focus on the simulation on short-term scale rather than long-term scale. 

Even though learning period of 10 sec is rather too short, it is expected that setting control 

period short may not have great impact on characterizing the performance of the proposed 

algorithm. Adopting the conventionally used parameter values in a practical cellular system, 

we set simulation parameters. We summarize main simulation parameters in Table 3. 

  To simulate the proposed algorithm, a feasible set collection F  needs to be estimated. Brute 

force search necessitates the exponential complexity with the number of cells which can not be 

feasible. To deal with this problem, we define a collection of neighbor supporter cells cY
 
for 

cell c  as follows 

})|())(Pr(|{   



c

c
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cZS

c
c dzAzfxESY                                 (27) 

where  
cS 

 is a set of active cells with the power of the cell c  being turned off, and cA  is the 

SNR coverage of the cell c  which satisfies an inequality, 
cA

cXc dxAxfxE )|())(Pr( }{ .  

 
Table 3. Simulation parameters. 

parameter value 

Transmit Power of Macro cells  20Watt 

Transmit power of Small cells 1Watt 

Path loss exponent  4.05 

Bandwidth 20MHz 

Operating Frequency 1850MHz 

Number of MSs 570 

Minimum Inter-Macro BS distance 1000m 
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This inequality implies that SNR outage is less than  . Thus, cY  is the collection of the sets 

consisting of neighbors providing the same SNR outage coverage of the cell c  while the 

power of the cell c  is turned off. To find cY , we define a set of candidate neighbor cells cW  as   

},)(|{ 00 caxthatsuchxaW Tac                                 (28) 

For given cW , there are 12
||
cW  possible candidate sets which can be included in cY . If cW  is 

large, then it will add extra complexity. Thus, one can reduce the size of cW
 
in some sacrifice 

of performance which is expected to be negligible. Each cell counts the number of events that 

both SNRs of cell c , and cell a  are greater than SNR threshold. The numbers of events are 

sorted with decreasing order. Cells corresponding to top WN in the sorted list are selected as 

candidates to be used for finding cY  approximately. At each frame, the event count of the i th 

combination of neighbor support cells can be counted as follows 
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                                      (29) 

where  ciC ,  is the i th combination of neighbor supporter cells for cell c , cM  is the set of MSs 

served by the cell c ,   is a logical or operation, and ()I  is an indication function which has 

value 1 if the condition inside the bracket is true, otherwise 0. Exploiting this information, one 

can estimate cY  as  

}12,...1,/)(|{ˆ ||
,,,,  cW
cTcicTcic iNVNCY                          (30) 

where cTN ,  is the total number of SNR report at the cell .c  (30) implies that a collection of 

neighbor supporter cells is determined from the estimated outage probability of each set of 

neighbor supporter cells. In the simulation, cW  is estimated after the first 5000 frames. If the 

number of elements is greater than 10, then some elements of cW  are removed with the rule 

described above. Then, cŶ  is determined from ciV ,  estimated for the second 5000 frames.  

 

6.2. Simulation Results 

In this subsection, we investigate the performance of the proposed ASC algorithm with 

simulation results. Three performance metrics, the percentage of active cells, the number of 

HOs, and average user perceived rate (UPR) are considered. The percentage of active cells is 

defined as the ratio between the number of active cells and the total number of cells. It will be 

given separately for macro cells and small cells to assess the power efficiency more accurately 

in relation with other metrics. The number of HOs is also an important parameter to be 

considered for controlling the active state of cells. HO often incurs delay and degradation in 

service reliability. HO performance in a practical system depends on HO algorithms. However, 

in this simulation HO is determined instantly with received signal strength for simplicity to be 

free from a specific HO algorithm and parameterization. Thus, the number of HOs will depend 

on the mobility of MSs and how often ASC algorithm switches on or off a cell. Depending on 

how many cells are turned off and which cells are off, service quality may be different. One of 

representative metrics for service quality at MS is average UPR. UPR is defined to be the ratio 

between the data traffic size and total time to finish its transmission. Thus, UPR represents the 

end user experience in having wireless service. In summary, the percentage of active cells, the 

number of HOs, and average UPR are chosen as representative performance metric to assess 

the power efficiency, service reliability, and end user service experience. 
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The performance of the proposed algorithm is likely to depend mostly on the threshold HT  

and LT  which are used for deciding the active state depending on cell load. In Fig. 1, the 

effects of these thresholds on the active state were shown for two different traffic densities, 

0.01, and 0.001. Two different types of plots were drawn together. First, the percentage of 

active cells was shown when LT  increased from 0.1 to 0.8 with the step of 0.1 while fixing 

.9.0HT  It can be observed that the percentage of active macro cells decreases as LT  

increases.  It is because there is more chance to turn off a cell when LT  is high. However, the 

percentage of active small cells is kept constant about 5%. High loading is required to turn on 

a cell for high .HT  However, small cells usually have low loading due to small coverage 

unless the wireless network is heavily crowded. Second, the percentage of active small cells 

was shown to decrease as HT  decreased from 0.9 to 0.2 with the step of 0.1 while fixing 

.1.0LT
 
Low LT:  tends to make relatively large percentage of small cells active, since it 

activates the cells with small loading. However, the percentage of active macro cells does not 

change much with increasing  .HT  As long as traffic density is not very low, and traffic is 

uniformly distributed geometrically, each macro cell may have some loading due to large 

coverage. Thus, every macro cell is active when  ,1.0LT and  traffic density is 0.01, while 

there is slight decrease in the percentage of active macro cells when  1.0LT , and  traffic 

density is 0.001. These results confirm that high LT  leads to aggressive active state control 

while low HT  and low LT  lead to conservative active state control.  

 

  
Fig. 1. Effects of load thresholds on active state  (solid line : macro cell, dotted line : small cell). 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

80

90

100

%
 o

f 
A

ct
iv

e
 C

e
lls

Threshold

 

 

T
H
 = 0.9,  = 0.01

T
H
 = 0.9,  = 0.001

T
L
 = 0.1,  = 0.01

T
L
 = 0.1,  = 0.001



3184          Yang : A Marko Decision Process (MDP) based Load Balancing Algorithm for Multi-cell Networks with Multi-carriers 

 
Fig. 2. Effects of load thresholds on the number of HOs. 

 

  The effect of load thresholds on the number of HOs is shown in Fig. 2. There is no significant 

change depending on load threshold and traffic density. The number of HOs with traffic 

density of 0.001 is slightly more than one with 0.01. Since the number of active cells is small 

when the traffic density is small, turning power on or off influences more MSs. When traffic 

density is fixed at 0.01, the number of HOs is found to increase slightly with the same reason 

as  LT  increases while 9.0HT . Since HOs are incurred by both the mobility of MSs and the 

change in the active state of cells, the variation with load threshold depends on the period of 

active state control and observation time. Nonetheless, considering the short period of active 

state control, it is expected that the number of HOs is not very sensitive to the load thresholds.  

 
Fig. 3. The effect of the number of small cells on performances (solid line : traffic density of 0.1, dotted 

line : traffic density of 0.01). 
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  The effect of the number of small cells on performances is shown in Fig. 3. It was 

investigated for two different traffic densities, 0.1, and 0.01. In the top figure, it can be 

observed that while there is no significant change in the number of active small cells for the 

traffic density of 0.01, it starts to increase around 70 for the traffic density of 0.1. It is 

conjectured that as the number of small cells increases, there can be more chance to have small 

cells with relatively large loading, which produces this result. It is interesting to note that 

increase in the number of small cells from 10 to 110 does not change the number of active 

small macro cells much. This result may not be generalized, since massively large number of 

active cells may have different effect. Due to the limited memory of simulator and simulation 

time, we could not evaluate the effect of the very large number of small cells which is left for 

future research with different simulation methodology. In the middle figure, the number of 

HOs was plotted with the increasing number of small cells. As in Fig. 1, the number of HOs 

with the traffic density of 0.01 is slightly more than one with the traffic density of 0.1, since the 

percentage of active macro cells is relatively smaller than one with the traffic density of 0.01. 

It is also observed that the number of HOs increases slightly as the number of small cells 

increases. However,  it is not significant due to the small coverage of small cells. In the bottom 

figure, average UPRs were compared. In this paper, UPR is defined to be the ratio between the 

data traffic size and total time to finish its transmission. Thus, UPR represents the end user 

experience in having wireless service. Since active state is controlled such that the average 

loading of active cells can be maintained between the LT  and HT . It is expected that the UPRs 

is not likely to be constant over different number of small cells. Even though there does not 

seem to be any particular relationship between UPR and the number of small cells, relative 

variation of UPR seems to be marginal for the different numbers of small cells.  

 
Fig. 4. The percentage of active cells for different data traffic densities (solid line : small cells, dotted 

line : macro cells). 

 

  The proposed algorithm is compared with an existing algorithm and the case of all cells being 

active in Fig. 4. There is no proper existing ASC algorithm for a heterogeneous network to be 
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no more cell to be turned off. Thus, its performance is likely to depend on how long averaging 

time is set and how often traffic is generated. At the same time, there is no chance to turn on a 

cell which was turned off. It means that it may not be robust to unstable statistics or 

dynamicity of data traffic. Thus GOFF was modified with exploiting algorithm structure 

developed by [17] which we call modified-GOFF (M-GOFF). M-GOFF starts with all cells 

being active. At each control stage, it compares the cell load of active cells cL  with H  and 

L . If c HL   which means that it is over-loaded, the average cell load over its active 

neighbors is calculated for each inactive neighbor cell of the current over-loaded active cell. A 

cell among its neighbor inactive cells which has the largest average cell load over its active 

neighbors is turned on. If c LL  , the corresponding cell is turned off. We set H  and L  as 

0.9 and 0.1 respectively which seem to provide a reasonably good performance from trying 

several different parameterizations. 

 Total power consumption was compared in terms of the percentages of active macro cells and 

small cells separately in Fig. 4. Both the proposed ASC algorithm and M-GOFF are found to 

respond properly depending on traffic densities. The percentage of active macro cells is larger 

for both algorithms than that of active small cells in most cases, since macro cells provide 

larger coverage. Thus, considering the rolls of small cells as taking some portion of loading of 

macro cells, more refined method is called for as a future research direction. When traffic 

density is less than or equal to 0.0001, three small cells are still active with the proposed 

algorithm while their loading is much lower than  . This implies that these small cells are 

active to satisfy the coverage constraint rather than loading condition. It can also be observed 

that the proposed ASC provides about 35% power gain for macro cells over M-GOFF at the 

traffic densities of 0.01 and 0.001. It also has about 85% power gain for small cells over 

M-GOFF at the traffic density of 0.1. For other cases, the proposed algorithm and M-GOFF 

has similar power gain over the case of all cells being active. 

 
Fig. 5. The number of HOs for different data traffic densities. 
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are active, the number of HOs is the same regardless of traffic densities. This can be a good 

baseline to find the effect of the active state control on HOs. The number of HOs with the 

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0

0.5

1

1.5

2

2.5

3
x 10

5

Traffic density

N
u
m

b
e

r 
o
f 
H

O
s

 

 

Proposed method

M-GOFF[4]

All cells being active



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 7, July 2016                                        3187 

proposed algorithm is comparable to the case of all cells being active. This may imply that the 

proposed ASC algorithm does not incur excessive HOs due to controlling the active states of 

cells. When traffic densities are greater than equal to 0.001, Difference in the number of HOs 

between the proposed ASC and M-GOFF is within 10%, which means that both algorithms 

provide similar HO characteristics as long as the traffic density is not too small. The marginal 

reduction of the number of HOs with the proposed algorithm at the traffic density of 10
-4

 can 

be attributed to the faster convergence and the small number of active cells. M-GOFF appears 

to reduce the number of HOs significantly for traffic densities, 10
-5

 and 10
-4

, since the number 

of active cells is 1. Even though controlling this way may be good in terms of power efficiency 

and the number of HOs, it can result in significant degradation for some other performance 

measure such as average UPR as shown in Table 4. 

 

 
Fig. 6. The average UPR for different data traffic densities. 

 

 Fig. 6  shows average UPR for different data traffic densities. The average UPR with all cells 

being active is shown as baseline performance. As the traffic density decreases, there is more 
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the proposed algorithm by 50 percent or so, which supports the efficiency of the proposed 

algorithm. Even though both algorithms basically depend on load condition, selecting a cell to 

be turned off is quite different.  While M-GOFF turns off cells of which loading is below a 

threshold, the proposed algorithm does a cell with the smallest local average loading among 

cells turned on, which can be a reason why the proposed algorithm works in more power 

efficient way. When traffic density is less than or equal to 10
-4

, average UPR may not be 

statistically stable enough. Thus, instead of average UPR, the numbers of completed data 

traffics are compared in Table 4 for these traffic densities. The proposed method completed 
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the number of data traffics comparable to that of all cells being active while M- GOFF had 

significantly smaller number of traffics, since a single macro cell was turned on. This result 

supports that the proposed method provides a robust performance over various system 

conditions. 

We also consider another comparing algorithm which takes a centralized approach with 

simulated annealing [29] to make sure that the proposed ASC provides better performance 

than existing algorithms. It tries to maximize the following utility function ( )ONU F . 

 

( )
( ) (1 ) ON

cc FO ON
ON

REF cc

PR F
U F

R P
 


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


                                   (31) 

 

where   is a weight determining a tradeoff between user edge throughput gain and power 

gain, ( )O ONR F is the user edge throughput which is defined as 5% percentile of UPR, and 

REFR is a reference edge UPR. In simulated annealing procedure, there is a step for generating 

successor configuration which allows the change of active state over a single cell. 

Corresponding cell is randomly selected from cells which changes its active state from 

M-GOFF. In this regard, this algorithm can be thought as a refined version of M-GOFF, which 

we call simulated annealing M-GOFF (SA-M-GOFF). 

  In Table 5, we compare the performance of the proposed algorithm with exiting algorithms 

when traffic density is 0.05 and all MSs move with the same velocity of 3km/h or 60km/h. It 

can be observed that the proposed ASC algorithm provides similar average UPR to that of 

M-GOFF while SA-M-GOFF has lower average UPR. 95% confidence intervals of average 

UPR verify that the difference in the average UPR of the proposed ASC and M-GOFF is not 

statistically significant while it is marginally lower than the case of all cells being active. The 

difference in the number of HOs among the proposed ASC, M-GOFF and the case of all cells 

being active is within 10% of the number of HOs for the case of all cells being active. 

SA-M-GOFF incurs relatively larger number of HOs due to trying many different active states 

in simulated annealing process. The proposed algorithm shows that its turns on small cells and 

turns off macro cells with relatively larger proportion, which provides more power efficient 

operation that comparing algorithms. SA-M-GOFF seems to perform worse for this simulation 

condition, which may be attributed to the sensitivity to parameterization of simulated 

annealing and a cost function. In summary, regardless of the velocity of the MSs, the proposed 

algorithm shows the consistent performance trends as the case of MS movement uniformly 

distributed from 0km/h to 100km/h. That is, it provides power efficiency while the number of 

HOs is comparable to that of the case of all cells being active and the average UPR is similar to 

that of M-GOFF. 

 

 
Table 4. Comparison of the number of completed traffics when traffic density is  10

-4 
or 10

-5
. 

Traffic Density Proposed Method M-GOFF NOPC 

10
-4

 103 27 113 

10
-5

 9 2 15 
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Table 5. Performance of the proposed ASC algorithm when all MSs moves with the same velocity. 

MS 

Movement 

Algorithms % of 

Active 

Small 
Cells 

% of 

Active 

Macro 
Cells 

No. of 

HOs 

Average 

UPR 

(Mpbs) 

Lower Bound of 95% 

Confidence Interval of 

Average UPR (Mbps) 

Upper Bound of 95% 

Confidence Interval of 

Average UPR (Mbps) 

3km/h for 

all MSs 

Proposed ASC  8.77 59.65 55191 30.15 28.34 31.95 

M-GOFF 0 65.91 58434 31.23 29.22 33.24 

SA-M-GOFF 1.75 91.23 70433 21.43 19.68 23.17 

No ASC 100 100 59574 35.01 33.41 36.61 

60km/h for 
all MSs 

Proposed ASC  1.75 36.84 263697 31.79 29.20 34.38 

M-GOFF 0 66.67 248643 33.50 31.07 35.93 

SA-M-GOFF 0 68.42 250798 30.59 28.34 32.83 

No ASC 100 100 264125 47.45 44.58 50.31 

7. Conclusions 

In this paper, an active state control algorithm for a heterogeneous network was formulated 

into approximate Markov decision process. A learning algorithm with a random policy with 

coverage constraint was proposed to solve the problem. Simulation results verify that the 

proposed algorithm can properly controls the number of active cells depending on traffic 

density while providing consistent UPR for a wide range of traffic densities.   

  There are some limitations on this research, since we focused on the problem formulation and 

the characterization of the proposed algorithm. The proposed algorithm implicitly considers 

the coverage constraint only. To provide better user experience, it will be required for a system 

to provide consistent QoS. Controlling the active state of each cell can have significant 

influence on QoS. Thus, additional constraints such as minimum UPR or minimum delay need 

to be added to the active state control problem. However it may require the joint optimization 

of HO, power control, and load balancing, which is a very difficulty problem. This research 

also can be further extended to the case of a heterogeneous network with device to device 

(D2D) communication. Since D2D can be considered as an extension of a cell coverage, it 

may call for a totally different approach to control the active state of each cell. 
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