DOI QR코드

DOI QR Code

Recovery of serine protease inhibitor from fish roes by polyethylene glycol precipitation

  • Lee, Hyun Ji (Department of Food and Nutrition/Institute of Marine Industry, Gyeongsang National University) ;
  • Kim, Hyung Jun (Department of Seafood Science and Technology/Institute of Marine Industry, Gyeongsang National University) ;
  • Park, Sung Hwan (Department of Food and Nutrition/Institute of Marine Industry, Gyeongsang National University) ;
  • Yoon, In Seong (Department of Food and Nutrition/Institute of Marine Industry, Gyeongsang National University) ;
  • Lee, Gyoon-Woo (Department of Food and Nutrition/Institute of Marine Industry, Gyeongsang National University) ;
  • Kim, Yong Jung (Department of Seafood Science and Technology/Institute of Marine Industry, Gyeongsang National University) ;
  • Kim, Jin-Soo (Department of Seafood Science and Technology/Institute of Marine Industry, Gyeongsang National University) ;
  • Heu, Min Soo (Department of Food and Nutrition/Institute of Marine Industry, Gyeongsang National University)
  • Received : 2016.02.15
  • Accepted : 2016.05.19
  • Published : 2016.07.31

Abstract

The fractionation of serine protease inhibitor (SPI) from fish roe extracts was carried out using polyethylene glycol-4000 (PEG4000) precipitation. The protease inhibitory activity of extracts and PEG fractions from Alaska pollock (AP), bastard halibut (BH), skipjack tuna (ST), and yellowfin tuna (YT) roes were determined against target proteases. All of the roe extracts showed inhibitory activity toward bromelain (BR), chymotrypsin (CH), trypsin (TR), papain-EDTA (PED), and alcalase (AL) as target proteases. PEG fractions, which have positive inhibitory activity and high recovery (%), were the PEG1 fraction (0-5 %, w/v) against cysteine proteases (BR and PA) and the PEG4 fraction (20-40 %, w/v) against serine proteases (CH and TR). The strongest specific inhibitory activity toward CH and TR of PEG4 fractions was AP (9278 and 1170 U/mg) followed by ST (6687 and 2064 U/mg), YT (3951 and 1536 U/mg), and BH (538 and 98 U/mg). The inhibitory activity of serine protease in extracts and PEG fractions from fish roe was stronger than that of cysteine protease toward common casein substrate. Therefore, SPI is mainly distributed in fish roe and PEG fractionation effectively isolated the SPI from fish roes.

Keywords

References

  1. Akazawa H, Miyauchi Y, Sakurada K, Wasson DH, Reppond KD. Evaluation of protease inhibitors in Pacific whiting surimi. J Food Sci. 1993. doi:10.1300/J030v02n03_06.
  2. Barret AJ. An introduction to the proteinase. In: Barret AJ, Salvesen G, editors. Proteinase inhibitors. Amsterdam: Elsevier Science BV; 1986. p. 3-22.
  3. Burnouf T. Chromatography in plasma fractionation: benefits and future trends. J Chromatogr B Biomed Sci Appl. 1995. doi:10.1016/0378-4347(94)00532-A.
  4. Cherqui A, Cruz N, Simoes N. Purification and characterization of two serine protease inhibitors from the hemolymph of Mythimna unipuncta. Insect Biochem Mol Biol. 2001. doi:10.1016/S0965-1748(00)00172-7.
  5. Choi JH, Park PJ, Kim SW. Purification and characterization of a trypsin inhibitor from the egg of skipjack tuna Katsuwonus pelamis. Fish Sci. 2002. doi:10.1046/j.1444-2906.2002.00576.x.
  6. Clereszko A, Kwasnik M, Dabrowski K, Poros B, Glogowski J. Chromatographic separation of trypsin-inhibitory activity of rainbow trout blood and seminal plasma. Fish Shellfish Immunol. 2000. doi:10.1006/fsim.1999.0223.
  7. Dawson RMC, Elliot DC, Elliot WH, Jones KM. Data for biochemical research. 3rd ed. Oxford, UK: Oxford Univ. Press; 1986. p. 417-41.
  8. Hamann DD, Amato PM, Wu MC, Foegeding EA. Inhibition of modori (gel weakening) in surimi by plasma hydrolysate and egg white. J Food Sci. 1990. doi:10.1111/j.1365-2621.1990.tb05202.x.
  9. Hao YL, Ingham KC, Wickerhauser M. Fractional precipitation of proteins with polyethylene glycol. In: Curling JM, editor. Methods of plasma protein fractionation. London, U.K.: Academic; 1980. p. 57-76.
  10. Ji SJ, Lee JS, Shin JH, Park KH, Kim JS, Kim KS, et al. Distribution of protease inhibitors from fish eggs as seafood processing byproducts. Kor J Fish Aquat Sci. 2011. doi:10.5657/KFAS.2011.0008.
  11. Kim HJ, Kim KH, Song SM, Kim IY, Park SH, Gu EJ, et al. Fractionation and characterization of protease inhibitors from fish eggs based on protein solubility. Kor J Fish Aquat Sci. 2013. doi:10.5657/KFAS.2013.0119.
  12. Kim HJ, Lee HJ, Park SH, Jeon YJ, Kim JS, Heu MS. Recovery and fractionation of serine protease inhibitors from bastard halibut, Paralichthys olivaceus, roe. Kor J Fish Aquat Sci. 2015. doi:10.5657/KFAS.2015.0178.
  13. Kim JS, Kim HS, Lee HJ, Park SH, Kim KH, Kang SI, et al. Lowering the bitterness of enzymatic hydrolysate using aminopeptidase-active fractions from the common squid (Todarodes pacificus) hepatopancreas. Korean J Food Sci Technol. 2014. doi:10.9721/KJFST.2014.46.6.716.
  14. Kim JS, Kim KH, Kim HJ, Kim MJ, Park SH, Lee HJ, et al. Chromatographic fractionation of protease inhibitors from fish eggs. Kor J Fish Aquat Sci. 2013. doi:10.5657/KFAS.2013.0351.
  15. Kim KY, Ustadi U, Kim SM. Characteristics of the protease inhibitor purified from chum salmon (Oncorhynchus keta) eggs. Food Sci Biotechnol. 2006;15:28-32.
  16. Kishimura H, Saeki H, Hayashi K. Isolation and characteristics of trypsin inhibitor from the hepatopancreas of a squid (Todarodes pacificus). Comp Biochem Physiol Part B: Biochem Mol Biol. 2001. doi:10.1016/S1096-4959(01)00415-8.
  17. Klomklao S, Benjakul S, Kishimura H. Optimum extraction and recovery of trypsin inhibitor from yellowfin tuna (Thunnus albacores) roe and its biochemical properties. Int J Food Sci Technol. 2014. doi:10.1111/ijfs.12294.
  18. Knight CG. The characterization of enzyme inhibition. In: Barret AJ, Salvesen G, editors. Proteinase inhibitors. Amsterdam: Elsevier Science BV; 1986. p. 23-48.
  19. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970. doi:10.1038/227680a0.
  20. Lee YZ, Aishima T, Nakai S, Sim JS. Optimization for selective fractionation of bovine blood plasma proteins using poly(ethylene glycol). J Agric Food Chem. 1987. doi:10.1021/jf00078a024.
  21. Lopuska A, Polanowska J, Wilusz T, Polanowski A. Purification of two low-molecular-mass serine proteinase inhibitors from chicken liver. J Chromatogr A. 1999. doi:10.1016/S0021-9673(99)00372-6.
  22. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with folin phenol reagent. J Biol Chem. 1951;193:256-75.
  23. Martone CB, Busconi L, Folco E, Sanchez JJ. Detection of a trypsin-like serine protease and its endogenous inhibitor in hake skeletal muscle. Arch Biochem Biophys. 1991. doi:10.1016/0003-9861(91)90433-J.
  24. Narsing Rao G, Prabhakara Rao P, Satyanarayana A, Balaswamy K. Functional properties and in vitro antioxidant activity of roe protein hydrolysates of Channa striatus and Labeo rohita. Food Chem. 2012. doi:10.1016/j.foodchem.
  25. Oda S, Igarashi Y, Manaka KI, Koibuchi N, Sakai-Sawada M, Sakai M, et al. Sperm-activating proteins obtained from the herring eggs are homologous to trypsin inhibitors and synthesized in follicle cells. Dev Biol. 1998;204:55-63. https://doi.org/10.1006/dbio.1998.9056
  26. Rawdkuen S, Benjakul S, Visessanguan W, Lanier TC. Fractionation and characterization of cysteine proteinase inhibitor from chicken plasma. J Food Biochem. 2005. doi:10.1111/j.1745-4514.2005.00027.x.
  27. Rawdkuen S, Benjakul S, Visessanguan W, Lanier TC. Cysteine proteinase inhibitor from chicken plasma: fractionation, characterization and autolysis inhibition of fish myofibrillar proteins. Food Chem. 2007. doi:10.1016/j.foodchem.
  28. Sangorrin MP, Folco EJ, Martone CM, Sanchez JJ. Purification and characterization of a protease inhibitor from white croaker skeletal muscle (Micropogon opercularis). Intl J Biochem Cell Biol. 2001;33:691-9. https://doi.org/10.1016/S1357-2725(01)00054-1
  29. Sharma VK, Kalonia DS. Polyethylene glycol-induced precipitation of interferon alpha-2a followed by vacuum drying: development of a novel process for obtaining a dry, stable powder. AAPS PharmSci. 2004. doi:10.1208/ps060104.
  30. Tsai YJ, Chang GD, Haung CJ, Chang YS, Haung FL. Purification and molecular cloning of carp ovarian cystatin. Comp Biochem Physiol B. 1996. doi:10.1016/0305-0491(95)02070-5.
  31. Ustadi U, Kim KY, Kim SM. Characteristics of protease inhibitor purified from the eggs of Alaska pollock (Theragra chalcogramma). J Kor Fish Soc. 2005. doi:10.5657/kfas.2005.38.2.083.
  32. Ustadi U, Kim KY, Kim SM. Purification and identification of a protease inhibitor from glassfish (Liparis tanakai) eggs. J Agric Food Chem. 2005;53:7667-72. https://doi.org/10.1021/jf0482459
  33. Weerasinghe VC, Morrissey MT, An H. Characterization of active components in food grade proteinase inhibitor for surimi manufacture. J Food Chem. 1996. doi:10.1021/jf950589z.
  34. Yamashita M, Konagaya S. A comparison of cystatin activity in various tissues of chum salmon Oncorhynchus keta between feeding and spawning migrations. Comp Biochem Physiol A. 1991. doi:10.1016/0300-9629(91)90402-X.

Cited by

  1. 넙치(Paralichthys olivaceus) 및 가다랑어(Katsuwonus pelamis) 알로부터 알칼리 가용화과정을 통해 회수한 알칼리 불용성획분의 이화학적 성분특성 vol.51, pp.3, 2016, https://doi.org/10.5657/kfas.2018.0230
  2. 어류 알로부터 알칼리 가용화공정을 통해 회수한 Collagenous Protein 획분의 식품 기능특성 vol.51, pp.4, 2016, https://doi.org/10.5657/kfas.2018.0351