MgB2 초전도 기술

  • 정국채 (재료연구소 분말/세라믹 연구본부 나노기능분말연구실)
  • Published : 2016.07.31

Abstract

Keywords

References

  1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Superconductivity at 39 K in magnesium diboride, Nature 410, 63-64, (2001) https://doi.org/10.1038/35065039
  2. S. X. Dou et al, Enhancement of the critical current density and flux pinning of MgB2 superconductor by nanoparticle SiC doping, Appl. Phys. Lett. 81, 3419 (2002) https://doi.org/10.1063/1.1517398
  3. I. I. Mazin, V. P. Antropov, Electronic structure, elecftron -phonon coupling, and multiband effets in MgB2, Physica C 385, 49 (2003) https://doi.org/10.1016/S0921-4534(02)02299-2
  4. B. Cristina and Y. tsutomu, Review of the superconducting properties of MgB2, Supercond. Sci. Technol. 14, R115 (2001) https://doi.org/10.1088/0953-2048/14/11/201
  5. H. Kumakura, A. Matsumoto, H. Fujii, K. Togano, High transport critical current density obtained for powder-in-tube-processed MgB2 tapes and wires using stainless steel and Cu-Ni tubes, Appl. Phys. Lett. 79, 2435 (2001) https://doi.org/10.1063/1.1407856
  6. S. X. Dou et al, Mechanism of enhancement in electromagnetic properties of MgB2 by nano SiC doping, Phys. Rev. Lett. 98, 097002 (2007) https://doi.org/10.1103/PhysRevLett.98.097002
  7. C. Shekhar, R. Giri, R. S.. Tiwari, O. N. Srivastava, S. K. Malik, Enhancement of flux pinning and high critical current density in graphite doped MgB2 supercon ductor, J. Appl. Phys. 102, 093910 (2007) https://doi.org/10.1063/1.2805650
  8. M. Eisterer, Magnetic properties and critical currents of MgB2, Supercond. Sci. Technol. 20, R47 (2007) https://doi.org/10.1088/0953-2048/20/12/R01
  9. J. H. Kim et al, Microscopic role of carbon on MgB2 wire for critical current density comparable to NbTi, NPG Asia Materials 4, e3 (2012) https://doi.org/10.1038/am.2012.3
  10. M. Tomsic et al, Development of magnesium diboride(MgB2) wires and magnets using in situ strand fabrication method, Physica C 456, 203 (2007) https://doi.org/10.1016/j.physc.2007.01.009
  11. M. Tomsic et al, Overview of MgB2 superconductor applications, Int. J. Appl. Ceram. Technol. 4 (3), 250 (2007) https://doi.org/10.1111/j.1744-7402.2007.02138.x
  12. www.hypertechresearch.com
  13. G. Z. Li et al, Enhanced higher temperature (20-30 K) transport properties and irreversibility field in nano-Dy2O3 doped advanced internal Mg infiltration processed MgB2 composites, Appl. Phys. Lett. 105, 112603 (2014) https://doi.org/10.1063/1.4896259
  14. G. Z. Li, M. D. Sumption, E. W. Collings, Kinetic analysis of MgB2 layer formation in advanced internal magnesium infiltration (AIMI) processed MgB2 wires, Acta materialia 96, 66 (2015) https://doi.org/10.1016/j.actamat.2015.06.013
  15. B. Birajdar, V. Braccini, A. Tumino, T. Wenzel, O. Eibl, G. Grasso, MgB2 multifilamentary tapes: microstructure, chemical composition and superconducting properties, Supercon. Sci. Technol. 19, 916 (2006) https://doi.org/10.1088/0953-2048/19/9/006
  16. www.columbussuperconductors.com
  17. www.ascinc.org/asc2012/ Applied Superconductivity Conference 2012, October 7-12, 2012, Portland, Oregon. USA
  18. T. Nakamura et al, Development and fundamental study on a superconducting induction/synchro nous motor incorporated with MgB2 cage windings, Supercond. Sci. Technol. 25, 014004 (2012) https://doi.org/10.1088/0953-2048/25/1/014004
  19. United States Patent Application Publication, K. Tanaka et al. MgB2 SUPERCONDUCTIVE WIRE, US 2012/0220465 A1, Aug. 30, 2012
  20. S. J. Ye et al, High-performance MgB2 superconducting wires for use under liquid-helium-free conditions fabricated using an internal Mg diffusion process, Supercond. Sci. Technol. 26, 125003 (2013) https://doi.org/10.1088/0953-2048/26/12/125003
  21. www.conectus.org/market.html
  22. S. J. Ye et al, Novel nanometer -level uniform amorphous carbon coating for boron powders by direct pyrolysis of coronene without solvent, Nanotechnology 26, 045602 (2015) https://doi.org/10.1088/0957-4484/26/4/045602
  23. F. Cheng et al, Improved supercon ducting properties in the Mg11B2 low activation superconductor prepared by low-temperature sintering, Sci. Rep. 6, 25498 (2016) https://doi.org/10.1038/srep25498
  24. D. Patel and J. H. Kim, Magnesium diboride(MgB2) wires for applications, Prog. Supercond. Cryog. 18(1), 1 (2016) https://doi.org/10.9714/psac.2016.18.1.001
  25. P. Kovac et al, Properties of MgB2 wires made by internal magnesium diffusion into different boron powders, Supercond. Sci. technol. 28, 095014 (2015) https://doi.org/10.1088/0953-2048/28/9/095014
  26. D. Xu et al, Microstructure and superconducting properties of nanocarbon-doped internal Mg diffusion-processed MgB2 wires fabricated using different boron powders, Supercond. Sci. Technol. 29, 045009 (2016) https://doi.org/10.1088/0953-2048/29/4/045009
  27. D. Wang et al, Influence of crystalline boron powders on superconducting properties of C-doped internal Mg diffusion processed MgB2 wires, Supercond. Sci. Technol. 28 105013 (2015) https://doi.org/10.1088/0953-2048/28/10/105013
  28. H. Kumakura et al, Development of internal Mg diffusion(IMD) -processed MgB2 superconducting wires towards long-length wire fabrications, 12th European Conference on Applied Superconductivity, 6-10th Sep. 2015, Lyon, France