
KYUNGPOOK Math. J. 56(2016), 611-624

http://dx.doi.org/10.5666/KMJ.2016.56.2.611

pISSN 1225-6951 eISSN 0454-8124

c© Kyungpook Mathematical Journal

Translating Integer Factoring into Graph Coloring

Tommy René Jensen
Department of Mathematics, Kyungpook National University, Daegu 702-701, Korea
e-mail : tjensen@knu.ac.kr

Abstract. This paper gives for every positive integer n an explicit construction of a

graph G with fewer than 15 log2 n− 5
2

logn+28 vertices, such that there exists a nontrivial

factoring of n if and only if G is 3-colorable.

1. Introduction

The Integer Factorization Problem (IFP) asks to find, for a given positive integer
n, a divisor d of n with 1 < d < n, if one exists. Such a d satisfies that also n/d is
an integer with 1 < n/d < n. For a detailed survey of IFP see [4].

As an approach to solve IFP we will for given input n construct a graph G
(= G(n)) with the property that any 3-coloring of G expresses a solution to IFP
for input n. In particular, a 3-coloring of G exists if and only if n is not a prime
number. Recall that a k-coloring of a graph is a function which assigns values from a
set of k elements to the vertices, so that the ends of each edge are assigned different
values, see also [2]. In general it is a difficult problem, more precisely it is an NP-
hard problem, to find a 3-coloring of a given graph, see [3]. However, the precise
hardness of finding a 3-coloring of a graph G(n) described above is unknown. In
contrast, the problem of deciding whether a 3-coloring of G(n) exists is polynomially
decidable, by the algorithm found by Agrawal, Kayan and Saxena [1] for deciding
in polynomial time whether n is a prime or composite. This class of graphs thus
provide a rare example of an explicit restriction of a graph coloring problem that
may possibly be neither NP-hard nor polynomially solvable.

Formally the main result is stated as follows.

Theorem 1. For every positive integer n there exists a graph G with fewer than
15 log2 n− 5

2 log n+ 28 vertices, such that there exists a nontrivial factoring of n if

Received March 4, 2015; accepted November 2, 2015.
2010 Mathematics Subject Classification: 03D15,05C15,11A51,68R10.
Key words and phrases: graph coloring, integer factorization.
This work was supported by Kyungpook National University Research Fund, 2012.

611

612 Tommy R. Jensen

and only if G is 3-colorable.

The remaining parts of the paper describe the proof of Theorem 1.

The strategy is to construct G in two steps. First a smaller graph H is con-
structed for which any 3-coloring of H expresses the calculations that are used in
multiplying any two numbers of the ‘right sizes’ to obtain a number ‘close’ to n as
their product. Two of the colors used to color H are considered as ‘bits’, that is,
the colors are 0 and 1, so that certain ordered sequences of the vertices of H may
be interpreted as binary representations of natural numbers.

The second step adds to H an additional set of edges which forces the sequence
of vertices of H that represents the result of the multiplication to represent exactly
the natural number n. The answer to IFP is then obtained by interpreting the
ordered sequences of vertices which represent the numbers that are multiplied.

2. Construction of H : gadgets and circuits

The first step in constructing G consists in constructing appropriate ‘gadgets’
for the arithmetic operations necessary to express multiplication of two natural
numbers.

Three vertices v0, v1, v2 of G are special ‘precolored’ vertices. They are made
pairwise adjacent in G, so that any 3-coloring of G has to assign distinct colors to
them. The colors of v0 and v1 are then to be interpreted as bits 0 and 1 respectively.
The color of v2 is a ‘dummy’ color, and usually assumed to be the integer 2.

In the illustrations which follow, the precolored vertices are pictured in solid
black, and marked with their respective colors, assumed to be 0, 1 and 2. Vertices
that have no precoloring or immediate restriction on the colors which they may
receive are drawn as open circles.

0 1

2

Figure 1. Precolored vertices

It is essential that the colors of the ‘input’ and ‘output’ vertices of H can be
interpreted as bits 0 and 1, and therefore they have to be prohibited from getting
the color 2. We achieve this by adding edges between each of these vertices and the
special vertex v2. Several other vertices in H appearing later in the construction
may also have to obey the same restriction, hence they are also made adjacent to
v2. Any such vertex which is restricted in this way to receiving either color 0 or 1
is referred to as a ‘bit-vertex’, and it is pictured as 2.

Factoring to Coloring 613

2

Figure 2. Bit-vertex

This and the following illustrations show to the right of the detailed drawing of
the relevant part of the graph a more compact symbolic representation of the same
part. In particular, in what follows, a bit-vertex will always be drawn with a square
symbol while omitting the edge that joins it to the 2-vertex.

Similarly, other vertices appear in the construction which are restricted to re-
ceiving only one of two possible colors, either 1 and 2, or 0 and 2. These two different
kinds of vertices are pictured with ∆ and ∇, respectively.

0 1

Figure 3. ∆-vertex ∇-vertex

Basic logical operations are sufficient (on a very low level) to express any rules
of computation that are performed by a machine, say a desktop computer. Such
operations are represented in H by ‘gates’, with the property that whenever their
‘input’ bit-vertices are assigned values 0 and 1, conventionally interpreted as ‘false’
and ‘true’, respectively, by a 3-coloring of H, then the ‘output’ bit-vertex is nec-
essarily assigned the appropriate value 0 or 1 given by the logical operation. An
‘or-gate’, usually denoted ∨-gate, is illustrated in Figure 4.

The two ‘input’ bit-vertices to such a gate are conventionally placed on top of
the picture, whereas the ‘output’ bit-vertex is placed at the bottom. It is easy to
verify that the depicted ∨-gate satisfies the required property: whenever the two
bit-vertices in the upper part of the picture are colored with 0 and 1 in any way,
then the bit-vertex at the bottom is forced to be colored 1 if and only if at least
one of these inputs is a 1, and it is colored 0 otherwise.

Similarly, the logical ‘and’ operation is represented by an ‘and’-gate, or ∧-gate.
It may serve as a useful mnemonic that the ∨-gate features a ∇-vertex where the
∧-gate has a ∆-vertex.

614 Tommy R. Jensen

∨

Figure 4. ∨-Gate

∧

Figure 5. ∧-gate

A third useful gate is the ‘exclusive-or’ gate, written Y-gate. In terms of bits 0
and 1, this gate computes the sum modulo 2 of its inputs. Its structure is shown in
Figure 6.

Factoring to Coloring 615

⊻

Figure 6. Y-gate

Further to ‘gates’, which have only a single output bit-vertex, we introduce
‘circuits’ that have several such outputs. In the simplest example, consider addition
of the natural numbers 0 and 1 when we represent these numbers in binary notation
as the respective bits 0 and 1. Then their sum may require two bits to represent in
binary, that is, we may write 0+0 = 00, 1+0 = 0+1 = 01, and 1+1 = 10, when we
use two bits to represent each result of the addition. The two output bits require
two bit-vertices as the output of the circuit, the one drawn at the left represents the
most significant bit of the result (which is 1 if and only if both inputs have value
1), and the one on the right represents the least significant bit of the result (which
is the exclusive-or of the input bits). In effect, the circuit computes both the ‘and’
and the ‘exclusive-or’ of its inputs.

Such a circuit, named a +-circuit, is shown in Figure 7. As an exercise, one
can check that it performs addition correctly. As a further exercise, one may try
to construct a simpler circuit which performs the same task, though this may not
be easy. As a step up, consider to add three natural numbers, each valued 0 or 1,
using binary representations. This requires three input bits, and only two output
bits, since the result of the addition may always be represented in binary by at most
two bits. Instead of drawing a complicated picture, we can first consider how to
perform this addition using only +-circuits and logical gates.

If the input bits to a +-circuit are b1 and b2, then let the output bits be named
most(b1, b2) and least(b1, b2), denoting the most and least significant bit, respec-
tively. Let b1, b2 and b3 be single bits that represent three numbers to be added in
binary representation. We apply the +-circuit once with inputs b1 and b2 to obtain

616 Tommy R. Jensen

b4 = most(b1, b2) and b5 = least(b1, b2). Continuing to apply the +-circuit to the
bits b3 and b5 we obtain b6 = most(b3, b5) and b7 = least(b3, b5). Then we observe
that b7 is the least significant bit of the sum of b1, b2 and b3. Moreover, at most one
of b4 and b6 can be equal to 1, and if this is true for one of them, then the most
significant bit of the addition is also 1. So the calculation is finished by applying
the ∨-gate with input b4 and b6 to produce the most significant bit of the result.

+

Figure 7. +-circuit

∨

+

+ Σ

Figure 8. 3-bit-sum Σ-circuit

Factoring to Coloring 617

Using the shorthand indicated in the right part of each of the previous pictures,
we get the depiction in Figure 8 of the obtained graph, which is referred to as the
Σ-circuit.

3. Constructing H

The number of gates used in the construction of H depends on the magnitudes
of the potential factors of the integer n. The number of bits to represent n in
binary is B = blog nc + 1 (where log is taken to base 2). The number of bits to
represent a smallest nontrivial factor of n is no larger than dB/2e (e.g. the natural
numbers that can be written with 5 or 6 bits are 16, 17, . . . , 63, for each of which
a smallest nontrivial factor, if one exists, is less than 8, so it can be represented
by at most three bits). So we can assume that if n factorizes into two nontrivial
factors, then these factors are represented in binary using B1 and B2 bits, where
2 ≤ B1 ≤ dB/2e ≤ B2 ≤ B − 1.

In the extreme cases, we have to allow for possible values B1 = 2, 3, . . . , dB/2e
and B2 = dB/2e, dB/2e+ 1, . . . , B − 1. In any case, the smallest of two factors can
be represented by M = dB/2e bits, and the largest by N = B − 1 bits.

We construct H by adding to the precolored vertices a sequence x1, x2, . . . , xM

of bit-vertices representing an input number x in binary notation, as well as a second
sequence y1, y2, . . . , yN of bit-vertices representing an input number y. No edges are
added between any two of these M +N vertices. The notation is chosen so that x1
and y1 represent the most significant bits, whereas xN and yM represent the least
significant bits of x and y, respectively.

Assume that x, y are natural numbers that are represented by the colors of the
above sequences in some coloring of H. We add an array of MN additional bit-
vertices aij for 1 ≤ i ≤ M and 1 ≤ j ≤ N. For each pair i, j we add a ∧-gate with
xi and yj as its input bit-vertices and aij as its output vertex. For fixed i this means
that ai1, ai2, . . . , aiN either provides another copy of the binary representation of y,
in case the (M − i)’th bit of x is 1, or it represents zero, in case the (M − i)’th bit
of x is a 0. Let

ti =

{
2M−iy if the color of xi is 1, and

0 otherwise.

Then

xy =

(
M∑
i=1

xi2
M−i

)
y =

M∑
i=1

ti.

To add up the ti’s and obtain xy, we let Si = ΣM
m=itm, for 1 ≤ i ≤ M, so that

each Si satisfies Si = Si+1 + ti, when 1 ≤ i < M, which yields xy = S1 as the final
outcome. Further bit-vertices sij , for 1 ≤ i ≤ M, and 1 ≤ j ≤ N, are introduced,
the purpose of which is to let the color of sij provide the (i+ j)’th bit of Si. Since
only the N most significant bits of ti are possibly nonzero, the representation of
Si differs in at most its initial N + 1 bit positions from the representation of Si+1.

618 Tommy R. Jensen

Hence the M − i least significant bits of Si may be inferred from the colors of
si+1,N , si+2,N , . . . , sMN , in this order. Additional bit-vertices cij (1 ≤ i < M and
0 ≤ j < N) serve to provide carry bits for the bitwise addition of Si+1 with ti. The
binary representation of each Si will be obtained by using a number of circuits and
gates described in the following.

For 1 ≤ i < M − 1 and 1 < j < N let σij be a Σ-circuit with input bit-vertices
aij , cij , and si+1,j−1, and with output bit-vertices sij and ci,j−1.

These circuits are illustrated in the following figures.

Σ

aij cij si+1,j−1

ci,j−1 sij

Figure 9. The Σ-circuit σij for 1 ≤ i < M and 1 < j < N.

For j = 1 there is a carry bit ci+1,0 coming from the summation that results in
Si+1. Hence for 1 ≤ i < M we let σi1 be a Σ-circuit with input ai1, ci1, and ci+1,0,
and with output ci0 and si1.

Σ

ai1 ci1 ci+1,0

ci0 si1

Figure 10. The Σ-circuit σi1 for 1 ≤ i < M.

For j = N there is no carry to add, and σiN is a +-circuit with input aiN and
si+1,N−1, and with output ci,N−1, siN .

+

aiN si+1,N−1

ci,N−1 siN

Figure 11. The +-circuit σiN .

Factoring to Coloring 619

For i = M − 1 and j = 1 there is no previous carry ci+1,0, and therefore σM−1,1

becomes a +-circuit as in Figure 12 with input aM−1,1 and cM−1,1, with output
cM−1,0 and sM−1,1.

+

aM−1,1 cM−1,1

cM−1,0 sM−1,1

Figure 12. The +-circuit σM−1,1.

+

aM−1,N sM,N−1

cM−1,N−1 sM−1,N

Figure 13. The +-circuit σM−1,N .

Finally, for i = M − 1 and j = N the only change is from replacing si+1,j−1, as
shown in Figure 13.

The illustration in Figure 14 shows, for the example of N = 4, the part of H
that represents the calculation of the partial sum Si from Si+1, for 1 ≤ i < M. It
is a circuit with 2N + 1 input bit-vertices xi, y1, . . . , yN , ci+1,0, si+1,1, . . . , si+1,N−1,
and with N + 1 output bit-vertices ci0, si1, . . . , siN .

For i = M − 1 the circuit HM−1 has similar inputs, except that the ci+1,0 is
deleted, and σi1 is changed from a Σ-circuit into a +-circuit.

It is convenient to define an HM -circuit as a circuit with inputs xM , y1, . . . , yN

and outputs sM1, . . . , sMN , and having N ∧-gates, such that xM and yj are the two
inputs to a ∧-gate with output sMj , for all j in the range 1 ≤ j ≤ N.

The three kinds of Hi-circuits are represented schematically in Figure 15.

620 Tommy R. Jensen

xi y1 y2 y3 y4 ci+1,0 si+1,1 si+1,2 si+1,3

∧ ∧ ∧ ∧

σi4

σi3

σi2

σi1

+

Σ

Σ

Σ

ci3

ci2

ci1

ci0 si1 si2 si3 si4

ai1 ai2 ai3 ai4

Figure 14. The Hi-circuit for 1 ≤ i < M − 1.

xi y1 y2 yN c
i
+

1
,0

s
i
+

1
,1

s
i
+

1
,2

s
i
+

1
,N

−
1

ci0 si1 si2 siN

Hi

xM−1 y1 y2 yN

c
M

−
1
,0

s
M

−
1
,1

s
M

−
1
,2

s
M

−
1
,N

s
M

1

s
M

2

s
M

,N
−

1

HM−1

xM y1 y2 yN

sM1 sM2 sMN

HM

Figure 15. The Hi-circuits for i = 1, . . . ,M − 2, for i = M − 1, and for i = M.

Factoring to Coloring 621

Combining the Hi-circuits for i = 1, . . . ,M by identifying the output of
Hi+1 with the input to Hi for i < M, produces a circuit with input bit-vertices
x1, . . . , xM , y1, . . . , yN , output bit-vertices c10, s11, . . . , s1N , s2N , . . . , sM−1.N , sMN .We
refer to this circuit as the H-circuit.

x1 x2 x3 y1 y2 y3 y4

c10 s11 s12 s13 s14 s24 s34

H3

H2

H1

Figure 16. The H-circuit in the case M = 3 and N = 4.

The graph H itself is obtained from the H-circuit by adding the precolored 0-,
1-, and 2-vertices, and the edges that join them to the bit-vertices, ∆-vertices, and
∇-vertices of the circuit.

4. Constructing G

Given the positive integer n, let M = dB/2e and N = B − 1, where
B = blog nc + 1, with log to base 2, so that B is the number of digits in the
binary representation of n. To avoid trivial exceptions we may assume n ≥ 4, so
that N > M ≥ 2. The H-circuit described in the previous section has M + N
input bit-vertices, named x1, . . . , xM , y1, . . . , yN , and M + N output bit-vertices,
which are named c10, s11, . . . , s1N , s2N , . . . , sM−1,N , sMN . Now assume that n is fac-
tored as n = xy, where x and y are integers with 1 < x ≤ y < n, and that
the vertices of H are properly colored with colors 0, 1, 2, so that the colors of
x1, . . . , xM are the binary digits of x, except possibly with leading zeroes, and the
colors of y1, . . . , yN similarly are the binary digits of y, including any leading ze-
roes. Then, by construction of H, the colors of the B = N + 1 output bit-vertices
s1,M−1, s1,M , . . . , s1N , s2N , . . . , sM−1,N , sMN are the binary digits of n, and each re-
maining output bit-vertex c10, s11, . . . , s1,M−2 receives color 0.

To construct G from H, we identify each output bit-vertex c10, s11, . . . , s1,M−2

by the 0-vertex of H and we identify each output bit-vertex of H by either

622 Tommy R. Jensen

the 0-vertex or the 1-vertex of H, so that the j’th vertex of the sequence
s1,M−1, s1,M , . . . , s1N , s2N , . . . , sM−1,N , sMN is identified with the 1-vertex if and only
if the j’th most significant binary digit of n is a 1. From the properties of H it fol-
lows that any proper coloring of the vertices of G has the property that the colors of
x1, . . . , xM and y1, . . . , yN provide binary representations of two nontrivial factors x
and y of n, and conversely, that any such factorization of n corresponds to a proper
coloring of G.

5. Complexity

The time complexity of deciding whether the graph G allows a coloring that uses
a fixed number of colors, and possibly to find such a coloring, is usually measured
in terms of the computation time relative to the number of vertices in G. We will
now calculate the number of vertices and edges first in H, and then in G.

It is convenient to distinguish two kinds of vertices of a gate or circuit, one being
the external vertices, that is, the input and output vertices, the remaining being
internal vertices. For a gate or circuit C, let x(C) and i(C) denote the number of
external and internal vertices of C, respectively. Let e(C) denote the number of
edges in C, including any edge with one endvertex that is internal in C and another
endvertex that is a precolored vertex. In particular, each interior bit-vertex of C
contributes one edge to this parameter, but exterior bit-vertices do not.

Since the H-circuit has input bit-vertices x1, . . . , xM and y1, . . . , yN , and output
bit-vertices c10, s11, s12, . . . , s1N , s2N , . . . , sMN , we have

x(H) = 2(M +N).

The interior vertices of the H-circuit are the interior vertices of H1, . . . ,HM together
with the input bit-vertices of H1, . . . ,HM−1, that is, the vertices c20, . . . , cM−1,0,
and the vertices sij with 1 ≤ i ≤M − 1 and 1 ≤ j ≤ N, and so

i(H) =

M∑
i=1

i(Hi) + (M − 1)N − 1.

The number of edges in H satisfies

e(H) =

M∑
i=1

e(Hi) + (M − 1)N − 1.

For each i with 1 ≤ i < M − 1 we have

i(Hi) =

N−1∑
j=1

(i(∧) + 1 + i(σij) + 1) + i(∧) + 1 + i(σiN)

= Ni(∧) + (N − 1)i(Σ) + i(+) + 2N − 1,

Factoring to Coloring 623

where i(∧), i(Σ) and i(+) are the numbers of internal vertices in the ∧-gate, the
Σ-circuit, and the +-circuit, respectively.

The number of edges in Hi, when 1 ≤ i < M − 1 is given by

e(Hi) = Ne(∧) + (N − 1)e(Σ) + e(+) + 2N − 1.

For i = M − 1 the values become

i(HM−1) = Ni(∧) + (N − 2)i(Σ) + 2i(+) + 2N − 1,

and
e(HM−1) = Ne(∧) + (N − 2)e(Σ) + 2e(+) + 2N − 1.

The HM -circuit consists of only ∧-gates, so that we have

i(HM) = Ni(∧) and e(HM) = Ne(∧).

We observe
i(∧) = i(∨) = 4 and e(∧) = e(∨) = 10,

and
i(+) = 8 and e(+) = 20.

The Σ-circuit satisfies

i(Σ) = 2i(+) + i(∨) + 3 = 23,

and
e(Σ) = 2e(+) + e(∨) + 3 = 44.

Substituting these values into the expressions for the Hi-circuits we obtain for
the number of internal vertices

i(Hi) =

 4N + 23(N − 1) + 8 + 2N − 1 = 29N − 16 for 1 ≤ i < M − 1,
4N + 23(N − 2) + 16 + 2N − 1 = 29N − 31 for i = M − 1,

4N for i = M.

And for the number of edges

e(Hi) =

 10N + 44(N − 1) + 20 + 2N − 1 = 56N − 25 for 1 ≤ i < M − 1,
10N + 44(N − 2) + 40 + 2N − 1 = 56N − 49 for i = M − 1,

10N for i = M.

Combining the above values yields:

i(H) = (M−2)(29N−16)+(29N−31)+4N+(M−1)N−1 = 30MN−16M−26N,

and

e(H) = (M−2)(56N−25)+56N−49+10N+(M−1)N−1 = 57MN−25M−47N+50.

624 Tommy R. Jensen

The number of vertices in the H-circuit is altogether equal to

x(H) + i(H) = 30MN − 14M − 24N.

Finally the graph H itself contains in addition the triangle of precolored vertices
and one edge for each external vertex, that is,

|V (H)| = 30MN − 14M − 24N + 3,

and
|E(H)| = e(H) + x(H) + 3 = 57MN − 23M − 45N + 53.

The graph G contains M +N fewer vertices and M +N fewer edges, due to the
identifications of output bit-vertices of the H-circuit with the precolored vertices.
Thus

|V (G)| = 30MN − 15M − 25N + 3 and |E(G)| = 57MN − 24M − 46N + 53.

From the estimates From M = dB2 e and N = B − 1, where B = blog nc, and
the estimates

1

2
log n ≤ dB

2
e ≤ 1

2
log n+ 1

and
log n− 1 ≤ B − 1 ≤ log n,

the bounds stated in Theorem 1 are easily obtained. 2

Acknowledgments. The author is grateful for the hospitality of the Mathematics
Department of the Cebu Normal University, Philippines, during the time of working
on this research.

References

[1] M. Agrawal, N. Kayal and N. Saxena, PRIMES is in P, Ann. Mathematics, 160,
(2004), 781–793.

[2] T. R. Jensen and B. Toft, Graph Coloring Problems, Wiley Interscience, 1995.

[3] M. R. Garey and D. S. Johnson, Computers and Intractability, W. H. Freeman, 1979.

[4] A. K. Lenstra, Integer Factoring, Designs, Codes and Cryptography, 19 (2000), 101–
128.

