KYUNGPOOK Math. J. 56(2016), 577-582 http://dx.doi.org/10.5666/KMJ.2016.56.2.577 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

Equivalence of \mathbb{Z}_4 -actions on Handlebodies of Genus g

Jesse Prince-Lubawy

Department of Mathematics, University of North Alabama, Florence, Alabama e-mail: jprincelubawy@una.edu

ABSTRACT. In this paper we consider all orientation-preserving \mathbb{Z}_4 -actions on 3-dimensional handlebodies V_g of genus g > 0. We study the graph of groups $(\Gamma(\mathbf{v}), \mathbf{G}(\mathbf{v}))$, which determines a handlebody orbifold $V(\Gamma(\mathbf{v}), \mathbf{G}(\mathbf{v})) \simeq V_g/\mathbb{Z}_4$. This algebraic characterization is used to enumerate the total number of \mathbb{Z}_4 group actions on such handlebodies, up to equivalence.

1. Introduction

A **G**-action on a handlebody V_g , of genus g > 0, is a group monomorphism $\phi : \mathbf{G} \longrightarrow \operatorname{Homeo}^+(V_g)$, where $\operatorname{Homeo}^+(V_g)$ denotes the group of orientation-preserving homeomorphisms of V_g . Two actions ϕ_1 and ϕ_2 on V_g are said to be equivalent if and only if there exists an orientation-preserving homeomorphism h of V_g such that $\phi_2(x) = h \circ \phi_1(x) \circ h^{-1}$ for all $x \in \mathbf{G}$. From [4], the action of any finite group \mathbf{G} on V_g corresponds to a collection of graphs of groups. We may assume these particular graphs of groups are in canonical form and satisfy a set of normalized conditions, which can be found in [2].

Let $\mathbf{v} = (r, s, t, m, n)$ be an ordered 5-tuple of nonnegative integers. The graph of groups $(\Gamma(\mathbf{v}), \mathbf{G}(\mathbf{v}))$ in canonical form, shown in Figure 1, determines a handlebody orbifold $V(\Gamma(\mathbf{v}), \mathbf{G}(\mathbf{v}))$. The orbifold $V(\Gamma(\mathbf{v}), \mathbf{G}(\mathbf{v}))$ is constructed in a similar manner as described in [2]. Note that the quotient of any \mathbb{Z}_4 -action on V_g is an orbifold of this type, up to homeomorphism.

An explicit combinatorial enumeration of orientation-preserving \mathbb{Z}_p -actions on V_g , up to equivalence, is given in [2]. In this work we will be interested in examining the orientation-preserving geometric group actions on V_g for the group \mathbb{Z}_4 . The case for \mathbb{Z}_{p^2} , when p is an odd prime is considered in [5] and gives a different result. As we will see, there is exactly one equivalence class of Z_4 -actions on the handlebody of genus 2. This result coincides with [3]. In this paper we will prove the following

Received February 25, 2015; accepted November 23, 2015.

2010 Mathematics Subject Classification: 57M60.

Key words and phrases: handlebodies, orbifolds, graph of groups, orientation-preserving, cyclic actions.

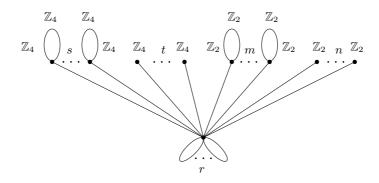


Figure 1: $(\Gamma(\mathbf{v}), \mathbf{G}(\mathbf{v}))$

main theorem:

Theorem 1.1 If \mathbb{Z}_4 acts on V_g , where g > 0, then V_g/\mathbb{Z}_4 is homeomorphic to $V(\Gamma(\mathbf{v}), \mathbf{G}(\mathbf{v}))$ for some 5-tuple $\mathbf{v} = (r, s, t, m, n)$ of nonnegative integers with r + s + t + m + n > 0 and g + 3 = 4(r + s + m) + 3t + 2n. The number of equivalence classes of \mathbb{Z}_4 -actions on V_g with this quotient type is m if r + s + t = 0, and m + 1 if r + s + t > 0.

To illustrate the theorem, let g = 3. Then the genus equation becomes 6 = 4(r+s+m) + 3t + 2n so that r+s+m must equal 0 or 1, and (r,s,t,m,n) is one of (0,0,2,0,0), (1,0,0,0,1), (0,1,0,0,1), or (0,0,0,1,1). Applying Theorem 1.1 to these four possibilities shows that there are a total of 1+1+1+1=4 equivalence classes of orientation-preserving \mathbb{Z}_4 -actions on V_3 . Some results that follow directly from Theorem 1.1:

Corollary 1.2 Every \mathbb{Z}_4 -action on a handlebody of even genus must have an interval of fixed points and at least two fixed points on the boundary of the handlebody.

Corollary 1.3 Every \mathbb{Z}_4 -action that is free on the boundary of the handlebody will have t = n = 0 and $g \equiv 1 \pmod{4}$.

2. The Main Theorem

The orbifold fundamental group of $V(\Gamma(\mathbf{v}), \mathbf{G}(\mathbf{v}))$ is an extension of $\pi_1(V_g)$ by the group \mathbf{G} . We may view the fundamental group as a free product $G_1 * G_2 * G_3 * \cdots * G_{r+s+t+m+n}$, where G_i is isomorphic to either \mathbb{Z} , $\mathbb{Z}_4 \times \mathbb{Z}$, \mathbb{Z}_4 , $\mathbb{Z}_2 \times \mathbb{Z}$, or \mathbb{Z}_2 . We establish notation similar to [2] and denote the generators of the orbifold fundamental group by $\{a_i: 1 \leq i \leq r\} \cup \{b_j, c_j: 1 \leq j \leq s\} \cup \{d_k: 1 \leq k \leq t\} \cup \{e_l, f_l: 1 \leq l \leq m\} \cup \{g_q: 1 \leq q \leq n\}$ such that $b_j^4 = d_k^4 = 1$, $[b_j, c_j] = 1$, $e_l^2 = g_q^2 = 1$, and $[e_l, f_l] = 1$.

Consider the set of pairs $((\Gamma(\mathbf{v}), \mathbf{G}(\mathbf{v})), \lambda)$, where λ is a finite injective epimor-

phism from $\pi_1^{orb}(V(\Gamma(\mathbf{v}), \mathbf{G}(\mathbf{v})))$ onto \mathbb{Z}_4 . We say λ is finite injective since the kernel of λ is a free group of rank g. We consider only finite injective epimorphisms such that $\ker(\lambda)=\operatorname{im}(\nu_*)$ for some orbifold covering $\nu:V\longrightarrow V(\Gamma(\mathbf{v}),\mathbf{G}(\mathbf{v}))$. Since V is a handlebody with torsion free fundamental group, V is homeomorphic to a handlebody V_g of genus $g=1-4\chi(\Gamma(\mathbf{v}),\mathbf{G}(\mathbf{v}))$. Define an equivalence relation on this set of pairs by setting $((\Gamma(\mathbf{v}),\mathbf{G}(\mathbf{v})),\lambda)\equiv((\Gamma(\mathbf{v}),\mathbf{G}(\mathbf{v})),\lambda')$ if and only if there exists an orbifold homeomorphism $h:V(\Gamma(\mathbf{v}),\mathbf{G}(\mathbf{v}))\longrightarrow V(\Gamma(\mathbf{v}),\mathbf{G}(\mathbf{v}))$ such that $\lambda'=\lambda\circ h_*$. We define the set $\Delta(\mathbb{Z}_4,V_g,V(\Gamma(\mathbf{v}),\mathbf{G}(\mathbf{v})))$ to be the set of equivalence classes $[((\Gamma(\mathbf{v}),\mathbf{G}(\mathbf{v})),\lambda)]$ under this relation.

Denote the set of equivalence classes $\mathscr{E}(\mathbb{Z}_4, V_g, V(\Gamma(\mathbf{v}), \mathbf{G}(\mathbf{v})))$ to be the set $\{[\phi] \mid \phi : \mathbb{Z}_4 \longrightarrow Homeo^+(V_g) \text{ and } V_g/\phi \simeq V(\Gamma(\mathbf{v}), \mathbf{G}(\mathbf{v}))\}$. Note that given any \mathbb{Z}_4 -action $\phi : \mathbb{Z}_4 \longrightarrow Homeo^+(V_g)$, it must be the case that for some $V(\Gamma(\mathbf{v}), \mathbf{G}(\mathbf{v}))$, $[\phi] \in \mathscr{E}(\mathbb{Z}_4, V_g, V(\Gamma(\mathbf{v}), \mathbf{G}(\mathbf{v})))$. The following proposition has a similar proof technique as found in [2].

Proposition 2.1 Let $\mathbf{v} = (r, s, t, m, n)$. The set $\mathscr{E}(\mathbb{Z}_4, V_g, V(\Gamma(\mathbf{v}))$ is in one-to-one correspondence with the set $\Delta(\mathbb{Z}_4, V_g, V(\Gamma(\mathbf{v}), \mathbf{G}(\mathbf{v})))$ for every g > 0.

To prove the main theorem, we count the number of elements in the delta set and use the one-to-one correspondence given in Proposition 2.1 to give the total count for the set $\mathscr{E}(\mathbb{Z}_4, V_g, V(\Gamma(\mathbf{v}), \mathbf{G}(\mathbf{v})))$. We resort to the following lemma to help count the number of elements in the delta set. The proof is an adaptation from [2].

Lemma 2.2 If α is an automorphism of $\pi_1^{orb}(V(\Gamma(\mathbf{v}), \mathbf{G}(\mathbf{v})))$, then α is realizable $[\alpha = h_* \text{ for some orientation-preserving homeomorphism } h: V(\Gamma(\mathbf{v}), \mathbf{G}(\mathbf{v})) \longrightarrow V(\Gamma(\mathbf{v}), \mathbf{G}(\mathbf{v}))]$ if and only if

$$\begin{split} &\alpha(b_j) = x_j b_{\sigma(j)}^{\varepsilon_j} x_j^{-1}, \\ &\alpha(c_j) = x_j b_{\sigma(j)}^{v_j} c_{\sigma(j)}^{\varepsilon_j} x_j^{-1}, \\ &\alpha(d_k) = y_k d_{\tau(k)}^{\delta_k} y_k^{-1}, \\ &\alpha(e_l) = u_l e_{\gamma(l)}^{\varepsilon'_l} u_l^{-1}, \\ &\alpha(f_l) = u_l e_{\gamma(l)}^{w_l} f_{\gamma(l)}^{\varepsilon'_l} u_l^{-1}, and \\ &\alpha(g_q) = z_q g_{\varepsilon(q)}^{\delta'_q} z_q^{-1}, \end{split}$$

for some $x_j, y_k, u_l, z_q \in \pi_1^{orb}(V(\Gamma(\mathbf{v}), \mathbf{G}(\mathbf{v}))); \sigma \in \sum_s, \tau \in \sum_t, \gamma \in \sum_m, \xi \in \sum_n; \varepsilon_j, \delta_k, \varepsilon_l', \delta_q' \in \{+1, -1\}; \text{ and } 0 \leq v_j < 4, 0 \leq w_l < 2.$ Note that Σ_l is the permutation group on l letters.

Note that from [1], a generating set for the automorphisms of the handlebody orbifold fundamental group $\pi_1^{orb}(V(\Gamma(\mathbf{v}), \mathbf{G}(\mathbf{v})))$ is the set of mappings $\{\rho_{ji}(x), \lambda_{ji}(x), \mu_{ji}(x), \omega_{ij}, \sigma_i, \phi_i\}$ whose definitions may be found in [1]. The first five maps are realizable. The realizable ϕ_i 's are of the form found in Lemma 2.2 and will be used in the remaining arguments of this paper.

Lemma 2.3 Let $\mathbf{v} = (r, s, t, m, n)$ with m > 0 and let

$$\lambda_1, \lambda_2: \pi_1^{orb}(V(\Gamma(\mathbf{v}), \mathbf{G}(\mathbf{v}))) \longrightarrow \mathbb{Z}_4$$

be two finite injective epimorphisms such that there exists a j with $\lambda_1(f_j)$ being a generator of \mathbb{Z}_4 and $\lambda_2(f_i)$ is not a generator of \mathbb{Z}_4 for all i. Then λ_1 and λ_2 are not equivalent.

Proof. Let $\lambda_1, \lambda_2 : \pi_1^{orb}(V(\Gamma(\mathbf{v}), \mathbf{G}(\mathbf{v}))) \longrightarrow \mathbb{Z}_4$ be two finite injective epimorphisms such that λ_1 sends f_j to a generator of \mathbb{Z}_4 for some j and λ_2 does not send f_i to a generator of \mathbb{Z}_4 for all i. We may assume that $\lambda_2(f_i) = 0$ for all i by composing λ_2 with the realizable automorphism $\prod \phi_i$, where ϕ_i sends the generator f_i to the element $e_i^{w_i} f_i$ and leaves all other generators fixed. Note that $w_i = 0$ if $\lambda_2(f_i) = 0$ and $w_i = 1$ if $\lambda_2(f_i) = 2$. To show that λ_1 and λ_2 are not equivalent we will consider the element f_j such that $\lambda_1(f_j)$ generates \mathbb{Z}_4 . For contradiction, assume that λ_1 is equivalent to λ_2 . Then by Lemma , there exists a realizable automorphism α such that $\alpha(f_j) = u e_m^w f_m^{\pm 1} u^{-1}$, where $u \in \pi_1^{orb}(V(\Gamma(\mathbf{v}), \mathbf{G}(\mathbf{v})))$ and $0 \le w < 2$. Hence $\lambda_1(f_j) = w \lambda_2(e_m)$, where $\lambda_2(e_m)$ is a multiple of 2, and hence $\lambda_1(f_j)$ is a multiple of 2. This is impossible since $\lambda_1(f_j)$ is a generator of \mathbb{Z}_4 . Therefore λ_1 and λ_2 cannot be equivalent, proving the lemma.

Lemma 2.4 Let $\mathbf{v} = (r, s, t, m, n)$ and let $\lambda : \pi_1^{orb}(V(\Gamma(\mathbf{v}), \mathbf{G}(\mathbf{v}))) \longrightarrow \mathbb{Z}_4$ be a finite injective epimorphism. There exists a finite injective epimorphism $\tilde{\lambda} : \pi_1^{orb}(V(\Gamma(\mathbf{v}), \mathbf{G}(\mathbf{v}))) \longrightarrow \mathbb{Z}_4$ equivalent to λ such that the following hold:

- (1) $\tilde{\lambda}(a_1) = \cdots = \tilde{\lambda}(a_r) = 1.$
- (2) $\tilde{\lambda}(b_1) = \cdots = \tilde{\lambda}(b_s) = 1.$
- (3) $\tilde{\lambda}(c_i) = 0$ for all $1 \le i \le s$.
- (4) $\tilde{\lambda}(d_1) = \cdots = \tilde{\lambda}(d_t) = 1.$
- (5) $\tilde{\lambda}(e_1) = \cdots = \tilde{\lambda}(e_m) = 2.$
- (6) $\tilde{\lambda}(f_i) = 1$ for all $i \leq k$ some $0 \leq k \leq m$.
- (7) $\tilde{\lambda}(f_i) = 0$ for all $k < i \le m$.
- (8) $\tilde{\lambda}(g_1) = \cdots = \tilde{\lambda}(d_n) = 2.$

Proof. Let $\lambda : \pi_1^{orb}(V(\Gamma(\mathbf{v}), \mathbf{G}(\mathbf{v}))) \longrightarrow \mathbb{Z}_4$ be a finite injective epimorphism.

Properties (5) and (8) must occur since λ is finite injective.

Property (4) follows by composing λ with the realizable automorphism $\prod \phi_i$, where ϕ_i sends the generator d_i to the element $d_i^{\varepsilon_i}$ and leaves all other generators fixed. Note that $\varepsilon_i = 1$ if $\lambda(d_i) = 1$ and $\varepsilon_i = -1$ if $\lambda(d_i) = 3$.

Property (2) follows by a similar technique. Assuming property (2) holds, property (3) follows by composing λ with the realizable automorphism $\prod \phi_i$, where ϕ_i sends the generator c_i to the element $b_i^{-\lambda(c_i)}c_i$ and leaves all other generators fixed.

To show properties (6) and (7) hold, we may compose λ with the realizable automorphism $\prod \phi_i$, where ϕ_i sends the generator f_i to the element $e_i^{z_i} f_i$ and leaves all other generators fixed. Note that $z_i = 1$ if $\lambda(f_i) = 2$, $z_i = 2$ if $\lambda(f_i) = 0$ or $\lambda(f_i) = 1$, and $z_i = -1$ if $\lambda(f_i) = 3$. Furthermore, composing λ with the realizable automorphisms ω_{ij} we may interchange f_i as needed so that the first k generators map to 1 and the last m - k generators map to 0.

Finally, to prove property (1) we may assume that there exists an element $x \in G_j$ (where G_j is either \mathbb{Z} , \mathbb{Z}_4 , $\mathbb{Z}_4 \times \mathbb{Z}$, or $\mathbb{Z}_2 \times \mathbb{Z}$) such that $\lambda(x) = 1$. Note that we may compose λ with a realizable automorphism that sends x to x^{-1} if needed. Now compose λ with the realizable automorphism $\prod \rho_{ji}(x^{-\lambda(a_i)+1})$. It may be shown that $(\lambda \circ \alpha)(a_i) = 1$ for all i.

Proposition 2.5 Let $\mathbf{v} = (r, s, t, m, n)$ with m > 0 and let

$$\lambda, \lambda' : \pi_1^{orb}(V(\Gamma(\mathbf{v}), \mathbf{G}(\mathbf{v}))) \longrightarrow \mathbb{Z}_4$$

be two finite injective epimorphisms that satisfy the conclusion of Lemma 2.4, where $\lambda(f_i) = 1$ for all $1 \leq i \leq k$ and $\lambda'(f_i) = 1$ for all $1 \leq i \leq k'$. Then λ is equivalent to λ' if and only if k = k'.

Proof. For a contradiction, assume that λ is equivalent to λ' and $k \neq k'$. Without loss of generality we may assume that k > k'. Hence, λ maps at least one more generator f_i to 1 as does λ' . This would mean that there must exist a realizable automorphism α such that $(\lambda \circ \alpha)(f_{k'+1}) = 0$. By Lemma 2.2, this is impossible. Thus, k = k'. For the reverse implication suppose that k = k'. Then $\lambda = \lambda'$, proving the proposition.

We will now prove the main theorem.

Proof. Define $\Delta_0(\mathbb{Z}_4, V_g, V(\Gamma(\mathbf{v}), \mathbf{G}(\mathbf{v})))$ to be the set of equivalence classes $[(\Gamma(\mathbf{v}), \mathbf{G}(\mathbf{v})), \lambda]$ such that $\lambda(f_i) = 0$ for all $1 \leq i \leq m$. We now define $\Delta_1(\mathbb{Z}_4, V_g, V(\Gamma(\mathbf{v}), \mathbf{G}(\mathbf{v})))$ to be the set of equivalence classes $[(\Gamma(\mathbf{v}), \mathbf{G}(\mathbf{v})), \lambda]$ such that $\lambda(f_i) = 1$ for at least one i such that $1 \leq i \leq m$. By Lemma 2.3, the delta set $\Delta(\mathbb{Z}_4, V_g, V(\Gamma(\mathbf{v}), \mathbf{G}(\mathbf{v})))$ may be viewed as the disjoint union $\Delta_0(\mathbb{Z}_4, V_g, V(\Gamma(\mathbf{v}), \mathbf{G}(\mathbf{v}))) \dot{\cup} \Delta_1(\mathbb{Z}_4, V_g, V(\Gamma(\mathbf{v}), \mathbf{G}(\mathbf{v})))$. Hence, the order of the delta set is the sum of the orders of the two sets $\Delta_0(\mathbb{Z}_4, V_g, V(\Gamma(\mathbf{v}), \mathbf{G}(\mathbf{v})))$ and $\Delta_1(\mathbb{Z}_4, V_g, V(\Gamma(\mathbf{v}), \mathbf{G}(\mathbf{v})))$. Applying Lemma 2.4 and Proposition 2.5, we see that $|\Delta_1(\mathbb{Z}_4, V_g, V(\Gamma(\mathbf{v}), \mathbf{G}(\mathbf{v})))| = m$ and $|\Delta_0(\mathbb{Z}_4, V_g, V(\Gamma(\mathbf{v}), \mathbf{G}(\mathbf{v})))| = 1$. Hence by Proposition 2.1, the theorem follows.

References

- [1] D. I. Fuchs-Rabinovitch, On the automorphism group of free products, I, Mat. Sb., 8(1940), 265-276.
- [2] J. Kalliongis and A. Miller, Equivalence and strong equivalence of actions on handlebodies, Trans. Amer. Math. Soc., 308(1988), 721–745.

- [3] J. Kim, Structures of geometric quotient orbifolds of three-dimensional g-manifolds of genus 2, J. Korean Math. Soc., 46(4)(2009), 859–893.
- [4] D. McCullough, A. Miller, and B. Zimmerman, *Group actions on handlebodies*, Proc. London Math. Soc., **59(3)**(1989), 373–416.
- [5] J. Prince-Lubawy, Equivalence of cyclic p^2 -actions on handlebodies, In preparation.