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ABSTRACT. In this paper, we establish certain integrals involving Srivastava’s Polyno-
mials [5] and Aleph Function ([8], [10]). On account of general nature of the functions
and polynomials involved in the integrals, our results provide interesting unifications and
generalizations of a large number of new and known results, which may find useful appli-
cations in the field of science and engineering. To illustrate, we have recorded some special
cases of our main results which are also sufficiently general and unified in nature and are
of interest in themselves.

1. Introduction

The Aleph function, introduced by Siidland et al. ([8]; see also [10]), is defined
in terms of Mellin Barnes type integrals as:
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where w = v/—1 and
H 1 T (b +BS)HJ 1 T(1—a; — Ajs)
D Ti Hj=m+1 I'(1 =bj; — Bjis) H] Lo I (@i + Ajis)

The integration path L = L., Y€ R extends from v —woo to v+ woo, and is
such that the poles of I' (1 — a; — A;s), j =1,...,n, do not coincide with the poles
of I'(bj + Bjs),j = 1,...,m. The parameters p; and g; are non-negative integers
satisfying the conditions 0 < n < p;, 0 < m < ¢, >0 fori=1,...,r. Also,
A;,Bj, Aji,Bj; >0 and aj,bj,aj;,b;; € C. An empty product in (2) is interpreted
as unity. The existence conditions for (1) are:
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(1.3) vi>0, |argz | < ggoi ;o oi=1,...,r
(1.4) wi >0, largz | < ggoi and R{G}+1<0
where
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The Srivastava’s Polynomials [5] occurring in the present paper is defined as:
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where n, &mgy(g = 1,2,..., ) are arbitrary positive integers and the coefficients

A, 1,(ng,ly > 0) are arbitrary constants, real or complex. For the present study,
we shall require the following results due to [3] and [1] respectively, pertaining to

the Jacobi Polynomials P\ (z) [2]:
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and
1 —a—
(1.9) ;(l—t—i-y) YM—t+y) =2 ﬁZP @B (g
where
(1.10) y=(1— 2zt +12)"°

2. Main Integrals
In this section, we establish the following three integrals:

First Integral
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The above integral converges under the conditions (3), (4) and (i) p > 1, o >
L;u>0,v>0;h>0, k>0 (Not both h and k be zero simultaneously)

(i) Re (p) + h min [Re (%)} > 0 and (i) Re (o) + k min [Re (};—ﬂ >0

Proof. On using the representations (1.1) and (1.7) in the left hand side of the
integral (1.11), and then on interchanging the order of summations and the s -
integral, we get
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Now, on interchanging the order of x- and s- integrals,which is permissible under
the conditions stated,and then on using [7], p. 314, eqn. (3) we easily arrive at the
desired result after a little simplification. O
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To establish the second and third integrals we use the following Lemma derived
from (2.11):

Lemma Under the conditions derived from those stated with (1.11), the following
integral formula holds:
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Proof. On setting A\ = 1,n; = nym; = Lw = %;u = 1l,v = 0 and 4,; =

( n—;a ) % in (11), the Srivastava’s polynomial occurring therein re-

duces toS1 [15%], which in view of [4, p. 68, eq. (4.3.2)] is expressed in terms of
Jacobi Polynomlals. Then, after a little simplification, we readily arrive at (1.12).0

Second Integral
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The integral (2.13) converges under the conditions derived from those mentioned
with (2.11).
Proof. We use (1.8) in the LHS of (2.13) and then interchange the order of sum-

mation and integration in the expression so obtained. Now by virtue of the Lemma
we readily arrive at the desired result. O
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Third Integral
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The integral (2.14) converges under the conditions derived from those mentioned
with (2.11).

Proof. We use (1.9) in the LHS of (2.14) and then interchange the order of sum-
mation and integration in the expression so obtained. Now by virtue of the Lemma
we readily arrive at the desired result. a

3. Special Cases

(i) On taking A =1 in (2.11), we get the following integral in terms of General
class of polynomials S7*[x] [5]:
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The integral (3.15) converges under the conditions derived from those mentioned
with (2.11).

(ii) On setting 7; = 1 and r = 1 in the main integrals, we obtain the following
three integrals in terms of Fox’s H-Function [6].
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Integrals (16), (17) and (18) converges under the conditions derived from those
mentioned with (11), (13) and (14) respectively.

(iii) On taking 7; = 1 in the main integrals, we get the results due to Agarwal
et al. [9].
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On account of being general and unified in nature, the results established here

yield a large number of known and new results involving simpler functions on suit-
able specifications of the parameters involved.
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