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Abstract. In this paper, we propose an error embedded Runge-Kutta method to improve

the traditional embedded Runge-Kutta method. The proposed scheme can be applied into

most explicit embedded Runge-Kutta methods. At each integration step, the proposed

method is comprised of two equations for the solution and the error, respectively. These

solution and error are obtained by solving an initial value problem whose solution has

the information of the error at each integration step. The constructed algorithm controls

both the error and the time step size simultaneously and possesses a good performance

in the computational cost compared to the original method. For the assessment of the

effectiveness, the van der Pol equation and another one having a difficulty for the global
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error control are numerically solved. Finally, a two-body Kepler problem is also used to

assess the efficiency of the proposed algorithm.

1. Introduction

There are many research topics [2, 4, 5, 8, 10, 11, 12, 15, 16, 17, 18] in developing
numerical methods for solving initial value problems (IVPs) described by

(1.1)
dϕ

dt
= f(t, ϕ(t)), t ∈ [t0, tf ]; ϕ(t0) = ϕ0,

where f has continuously bounded partial derivatives up to required order for the
developed numerical method. In particular, A long time simulation, which is needed
in many physical problems, is one of the most important topics in IVPs. The
embedded Runge-Kutta (ERK) method is a popular strategy for the long time
simulation. Most ERKs use two Runge-Kutta methods with different orders p and
q, simply denoted by RKp(q). In most cases, q > p and the low order RKp method
and the high order RKq method are applied to calculate the approximate solution
ϕm+1 and the local truncation error Em+1 := ϕ(tm+1) − ϕm+1, respectively, at
time tm+1 together with the information of ϕm at time tm. Hence, the existing
mechanism of ERK algorithm at each integration step is described by

(1.2)

{
ϕm+1 = F (ϕm),

em+1 = G(ϕm, ϕm+1),

where F and G are functions derived from the numerical methods. Another im-
portant factor of ERK is to control the size of each integration step, for which an
accurate and efficient scheme for calculating em+1 is quite important, and RKq
uses the same function values of RKp to reduce the computational cost. There
are many research literatures concerning the technique selecting the time step size
appropriately (for example, see [6, 7, 9, 12, 13, 14, 21]).

Notice that the solution at time tm+1 evolves from the solution at the previous
time, which is the most basic property for the solution ϕ(t) of (1.1). Due to this
evolution property, the error is usually accumulated as the time is increasing even
though the evolution property is not shown in the error formula described in (1.2).
Hence, for a long time simulation, smaller integration step sizes are usually required
to bound the truncation error as the time is going on. However, the usage of smaller
integration step sizes can not fully resolve the error control to get a given tolerance.
It is difficult to get reliable results at stringent tolerances (for example, see [19, 20]).

The subject of this paper is to improve the existing embedded integration
scheme resolving the mentioned difficulties above without a considerable modifi-
cation of ERK. Our motivation is on the well known fact that the addition of the
estimated error em+1 to the solution ϕm+1 after the whole procedure gives more
accurate solution. Based on this motivation, we propose a strategy to embed the
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estimated error into the algorithm for calculating the solution as a remedy to avoid
or reduce the accumulated error of em. That is, the proposed scheme is an explicit
single step algorithm, so called an error embedded Runge-Kutta (EERK) method,
of the form

(1.3)

{
ϕm+1 = F (ϕm, em),

em+1 = G(ϕm, em, ϕm+1).

As in the given embedded RKp(q), we use RKp and RKq to calculate the ap-
proximate solution ϕm+1 and the estimated error em+1 in (1.3), respectively. For
an appropriate step size controller of (1.3), we exploit the same one used in the
given RKp(q). The proposed EERK controls both the error and the time step size
simultaneously at each integration step, and it turns out that the proposed method
possesses a good performance in the computational cost compared with the original
one. For an assessment of the effectiveness of the proposed algorithm, the van der
pol oscillator problem and another one having a difficulty for the global error control
are numerically solved. Finally, a two-body Kepler problem is also used to assess
the efficiency of this algorithm. Throughout these numerical tests, it is shown that
the proposed method is quite efficient compared to several existing methods.

This paper is organized as follows. In Sec. 2, we describe the methodology
to formulate and control the solution and error formulas based on ERK. Several
numerical results are presented in Sec. 3 to give the numerical effectiveness of EERK.
Finally, in Sec. 4, a summary for EERK and some discussion for further works are
given.

2. Derivation of EERK

In this section, we derive a concrete algorithm of EERK based on a given ERK.
Let us assume that a Butcher array

(2.1)

c A

b

b̂

is given for a fixed embedded RKp(q) method, where

(2.2)
c = [c1, c2, · · · , cn]T , b = [b1, b2, · · · , bn],

b̂ = [b̂1, b̂2, · · · , b̂n], A = (αi,j)n×n

are given coefficients for RKp(q). Here, we assume that the arrays b and b̂ are co-
efficients for RKp and RKq, respectively. For a practice, we can consider RKF4(5),
RKF7(8), DOP7(8), etc. Let us assume that an approximate solution ϕm and an
estimated error em for the actual error Em := ϕ(tm) − ϕm at time tm are already
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calculated. More precisely, we assume that ϕm is calculated by the RKp and em
is obtained by the difference between the solutions calculated by RKp and RKq,
which is the basic process of ERK. Now, we are ready to introduce a strategy to
calculate the next step values ϕm+1 and em+1 at time tm+1. Let h = tm+1 − tm.
For the given embedded RK method, it is true that p < q and hence usually
Em = O(hp+1) > O(hq+1) = Em − em. Thus, from the relation

ϕ(tm) = ϕm + Em = ϕm + em + Em − em,

we give a guess that ϕm + em is a more accurate approximation of ϕ(tm) than ϕm.
Therefore, at the integration step [tm, tm+1], it is reasonable to solve the initial
value problem

(2.3)

{
ψ′(t) = f(t, ψ(t)), t ∈ [tm, tm+1],

ψ(tm) = ϕm + em

instead of

(2.4)

{
ψ′(t) = f(t, ψ(t)), t ∈ [tm, tm+1],

ψ(tm) = ϕm

to find the approximation ϕm+1, where ψ(t) denotes a perturbed solution for ϕ(t)
on [tm, tm+1]. Hence, as the embedded RKp(q) with the Butcher array given by
(2.1), we first solve the problem (2.3) with RKp to calculate the approximate so-
lution ϕm+1 and also solve (2.3) again with RKq to get the estimated error em+1.
Summarizing the procedures, we get the following error embedded Runge-Kutta
(EERK) method

(2.5)


ϕm+1 = ϕm + em + h

n∑
i=1

biki,

em+1 = h

n∑
i=1

(
b̂i − bi

)
ki,

where

(2.6) ki = f
(
tm + cih, ϕm + em + h

i−1∑
j=1

αi,jkj

)
, i = 1, · · · , n.

The difference of the geometric concepts between the algorithm (2.5) and ERK
can be explained as in Fig. 1. Fig. 1 (a) and Fig. 1 (b) are descriptions for EERK
and ERK, repsectively. The existing methods usually solve the perturbed IVP
(2.4) at each integration step. Hence, after the first step, the estimated error em
is accumulated as the time step is going on as shown in Fig. 1 (b). Therefore,
we reduce this accumulation of the estimated errors by embedding them at each
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(a) (b)

Figure 1: Geometric concepts of (a) EERK and (b) ERK

integration step, so that we can get a smaller global error. In other words, by giving
the usage of estimated error, we can improve the capability of the existing methods,
while existing methods use the estimated error only for the step-size selection. As
one can see, it may be inevitable to give more accurate solution, since the EERK
starts with possibly small perturbed initial value.

Remark 2.1. Three main differences between EERK and ERK are summarized as
follows.

(a) The traditional embedded RKp(q) uses only the approximate value ϕm at time
tm to calculate ϕm+1, whereas the algorithm (2.5) uses the value ϕm + em
instead of ϕm, which is a remarkable difference compared to the embedded
RKp(q).

(b) After the whole procedure of the embedded RK method, the estimated error
em+1 is frequently added to the solution ϕm+1 for giving a more accurate
result. Compared to it, the proposed scheme (2.5) uses more accurate in-
termediate values ki defined by (2.6) by embedding the estimated error em.
Hence, we would like to say the proposed algorithm as an error embedded
Runge-Kutta method. Simply, we denote the scheme by EERKp(q).

(c) If we let ϕ̃m := ϕm + em, then the above algorithm (2.5) gives the standard
RKp(q) for ϕ̃m. That is, ϕ̃m has the convergence order q and the approximate
solution ϕm has the convergence order p.

Using the formula (2.5), we present the following algorithm of EERK.

ALGORITHM EERK(f , ϕ0, [t0, tfinal], tol)
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1. Remark: The algorithm EERK is based on the Butcher table given by (2.1)
and a given function f . It calculates the approximate solution of (1.1). Fur-
ther, [t0, tfinal] is required integration interval and tol is given tolerance. We
assume that the same technique of the step-size selection in ERKs is used.

2. Set N :=length(ϕ0) and err := 0 ∈ RN .

3. Initialize h and told := t0.

4. Set tnew:=told + h. If tnew > tfinal, then exit.

5. Calculate{
k1 := f(told, ϕ0 + err),

ki := f(told+ ci, ϕ0 + err + h
∑i−1

j=1 ai,jkj), i = 2, · · · , n.

6. Calculate ϕnew := ϕ0 + err + h
∑n

i=1 biki and errnew := h
∑n

i=1

(
b̂i − bi

)
ki.

7. If ||errnew|| < tol, then take ϕ0 := ϕnew, err := errnew and save them. After
calculating new time step size hnew using errnew together with the given step
size controller in RKp(q) and setting h = hnew, go to step 4.
If ||errnew|| ≥ tol, then resize h using the given step size controller in RKp(q)
and go to step 5.

Example 2.2. In the following, we introduce three Butcher arrays corresponding
to most popular embedded RK methods [6, 7, 12, 21], RKF4(5), RKF7(8) and
DOP7(8) in Table 1, 2 and 3, respectively.

0 0 0 0 0 0 0
1
4

1
4 0 0 0 0 0

3
8

3
32

9
32 0 0 0 0

12
13

1932
2197 −7200

2197
7296
2197 0 0 0

1 439
216 -8 3680

513 − 845
4104 0 0

1
2 − 8

27 2 −3544
2565

1859
4104 −11

40 0

25
216 0 1408

2565
2197
4104 −1

5 0

16
135 0 6656

12825
28561
56430 − 9

50
2
55

Table 1: Runge-Kutta-Fehlberg 4(5) pair

3. Numerical Results
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0 0 0 0 0 0 0 0 0 0 0 0 0 0

2
27

2
27 0 0 0 0 0 0 0 0 0 0 0 0

1
9

1
36

1
12 0 0 0 0 0 0 0 0 0 0 0

1
6

1
24 0 1

8 0 0 0 0 0 0 0 0 0 0

5
12

5
12 0 −25

16
25
16 0 0 0 0 0 0 0 0 0

1
2

1
20 0 0 1

4
1
5 0 0 0 0 0 0 0 0

5
6 − 25

108 0 0 125
108 −65

27
125
54 0 0 0 0 0 0 0

1
6

31
300 0 0 0 61

225 −2
9

13
900 0 0 0 0 0 0

2
3 2 0 0 −53

6
704
45 −107

9
67
90 3 0 0 0 0 0

1
3 − 91

108 0 0 23
108 −976

135
311
54 −19

60
17
6 − 1

12 0 0 0 0

1 2383
4100 0 0 −341

164
4496
1025 −301

82
2133
4100

45
82

45
164

18
41 0 0 0

0 3
205 0 0 0 0 − 6

41 − 3
205 − 3

41
3
41

6
41 0 0 0

1 −1777
4100 0 0 −341

164
4496
1025 −289

82
2193
4100

51
82

33
164

12
41 0 1 0

41
840 0 0 0 0 34

105
9
35

9
35

9
280

9
280

41
840 0 0

0 0 0 0 0 34
105

9
35

9
35

9
280

9
280 0 41

840
41
840

Table 2: Runge-Kutta-Fehlberg 7(8) pair
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0 0 0 0 0 0 0 0 0 0 0 0 0 0

1
18

1
18 0 0 0 0 0 0 0 0 0 0 0 0

1
12

1
48

1
16 0 0 0 0 0 0 0 0 0 0 0

1
8

1
32 0 3

32 0 0 0 0 0 0 0 0 0 0

5
16

5
16 0 − 75

64
75
64 0 0 0 0 0 0 0 0 0

3
8

3
80 0 0 3

16
3
20 0 0 0 0 0 0 0 0

59
400

29443841
614563906 0 0 77736538

692538347 − 28693883
1125000000

23124283
1800000000 0 0 0 0 0 0 0

93
200

16016141
946692911 0 0 61564180

158732637
22789713
633445777

545815736
2771057229 − 180193667

1043307555 0 0 0 0 0 0

5490023248
9719169821

39632708
573591083 0 0 − 433636366

683701615 − 421739975
2616292301

100302831
723423059

790204164
839813087

800635310
3783071287 0 0 0 0 0

13
20

246121993
1340847787 0 0 − 37695042795

15268766246−
309121744
1061227803 − 12992083

490766935
6005943493
2108947869

393006217
1396673457

123872331
1001029789 0 0 0 0

1201146811
1299019798−

1028468189
846180014 0 0 8478235783

508512852
1311729495
1432422823 − 10304129995

1701304382 −48777925059
3047939560

15336726248
1032824649 −45442868181

3398467696
3065993473
597172653 0 0 0

1 185892177
718116043 0 0 −3185094517

667107341 − 477755414
1098053517 − 703635378

230739211
5731566787
1027545527

5232866602
850066563 − 4093664535

808688257
3962137247
1805957418

65686358
487910083 0 0

1 403863854
491063109 0 0 −5068492393

434740067 −411421997
543043805

652783627
914296604

11173962825
925320556 −13158990841

6184727034
3936647629
1978049680 −160528059

685178525
248638103
1413531060 0 0

13451932
455176623 0 0 0 0 − 808719846

976000145
1757004468
5645159321

656045339
265891186 − 3867574721

1518517206
465885868
322736535

53011238
667516719

2
45 0

14005451
335480064 0 0 0 0 − 59238493

1068277825
181606767
758867731

561292985
797845732 − 1041891430

1371343529
760417239
1151165299

118820643
751138087 − 528747749

2220607170
1
4

Table 3: Dormand and Prince 7(8) pair
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Among many ERKs, we consider only the methods introduced in Example 2.2
and the corresponding EERK methods for them denoted by eeRK4(5), eeRKF7(8)
and eeDOP7(8), respectively. To assess the improvement and effectiveness of the
proposed scheme, we consider two well known problems, van der Pol oscillator and
two-body Kepler problem. Also, we consider another one having a difficulty for
the global error control. In the subsequent examples, the notations Rtol and Atol
denote the relative and absolute tolerances, respectively. In all numerical results of
the examples, we use the sum of the approximate solution ϕm and the estimated
error em as the numerical solution to give more accurate results in each method. As
a measure of the effectiveness for each method, we calculate the required number of
function evaluations (nfeval) and the computational time (cputime) to solve each
problem. For given tolerances Rtol and Atol, we calculate the L2 norm for the
absolute error in log-scale at the final time for each problem and also the required
nfeval and cputime. In all numerical results, the y-axis represents the absolute
errors and the x-axis represents either nfeval (for example, Fig. 2 (a)) or cputime (for
example, Fig. 2 (b)). Also, all the marked points from left to right are corresponding
to the given tolerances from large to small, respectively. All numerical simulation
is executed with MATLAB 2011b(7.13.0.564) and Windows 7 O/S with Intel(R)
Core(TM) i7-3770 @ 3.4GHz CPU.

3.1 Example

As the first example, we consider the system of equations described by

(3.1)


y1

′ = 2ty2
1/5y4,

y2
′ = 10t exp(5(y3 − 1))y4,

y3
′ = 2ty4,

y4
′ = −2t log(y1)

defined on the interval [0, 20] with the initial condition [y1(0), y2(0), y3(0), y4(0)]
T =

[1, 1, 1, 1]T . The analytic solution of the problem is given by

y1(t) = exp(sin(t2)), y2(t) = exp(5 sin(t2)), y3(t) = sin(t2) + 1, y4(t) = cos(t2).

(3.2)

This problem is known that the global error control task [19] is difficult. In
each algorithm, the relative tolerance Rtol is varied from 1.0e-9 to 1.0e-13 and the
absolute tolerance Atol from 1.0e-12 to 1.0e-16. In Fig. 2, we list the numerical
results for each algorithm and compare them.

To check the efficiency of the EERK, let us observe the point in the right corner
of Fig 2 A. (a) obtained by DOP7(8). DOP7(8) needs about 11 · 1011 nfeval, but
eeDOP7(8) needs only 7 · 1011 approximately to get the same accuracy. In this
sense, one may say that eeDOP7(8) improves DOP7(8) about 33 percentage(%).
Likewise, from Fig. 2 B (a) and C (a), one can see that eeRKF7(8) and eeRKF4(5)
improve RKF7(8) and RKF4(5) about 25% and 15%, respectively. Also, from the
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B. The results of RKF7(8) and eeRKF7(8)

(a) (b)

0 1 2 3 4 5

x 10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

nfeval

L
o

g
1

0
(E

rr
)

 

 

RKF45
eeRKF45

2 4 6 8 10 12 14 16 18
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

cputime

L
o

g
1

0
(E

rr
)

 

 

RKF45
eeRKF45

C. The results of RKF4(5) and eeRKF4(5)

Figure 2: Comparison of (a) errors versus nfeval (b) errors versus cputime
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right figures in Fig. 2, one can see that the speed of computation is understandably
getting faster about 37%, 30% and 15% in order as displayed. Further, one can
see that eeDOP7(8) get a more accurate numerical solution with 100 times smaller
error than DOP7(8) under the same nfeval as shown in the right corner of Fig. 2
A (a). That is, the approximate solutions of DOP7(8) and eeDOP7(8) have the
absolute errors about 1.0e-8 and 1.0e-9.8, respectively.

Likewise, the errors of eeRKF7(8) and eeRKF4(5) are about 10 times and 3
times smaller than those of RKF7(8) and RKF4(5), respectively. To conclude,
eeDOP7(8) is most efficient among three improved methods for this example.

3.2 Van der Pol oscillator

The Van der Pol (VDPOL) problem originates from electronics and it describes
the behavior of nonlinear vaccum tube circuits [1]. The solution of the problem
satisfies a second order differential equation and it can be rewritten to a first order
form given by

(3.3)

{
y′1 = y2,

y′2 = µ(1− y22)y2 − y1, µ > 0,

where the scalar parameter µ indicates the nonlinearity and the strength of the
damping. According to the magnitude of µ, the stiffness of the described problem is
determined. In this example, we consider a nonstiff case by taking µ = 5. We solve
the problem on the integration interval [0, 20] with initial value [y1(0), y2(0)]

T =
[2, 0]T . It is well known that there are no analytic solution and hence we take a
reference solution at final time calculated by RADAU5 with the tolerances Atol =
Rtol = eps, where eps is the double precision of floating numbers in MATLAB. In
each algorithm, the relative tolerance Rtol is used by varing from 1.0e-7 to 1.0e-
11 and the absolute tolerance Atol from 1.0e-10 to 1.0e-14. In Fig. 3, we list the
numerical results for each algorithm and compare them.

As the same ways of the previous example, we discuss the efficiency and the
improvement of the proposed algorithms for the problem and summarize the results
in Table 4 and 5.

nfeval cputime
eeDOP7(8) 23% 25%
eeRKF7(8) 24% 26%
eeRKF4(5) 50% 52%

Table 4: Improvement ratio for VDPOL

As seen in Table 4, eeRKF4(5) is the biggest among three improvements in
the sense of both nfeval and cputime. To examine the accuracy of the EERK, we
investigate the error at the final time with nfeval in the Table 5. One can see
that the EERKs give more accurate result than existing algorithms. In particular,
eeDOP7(8) requires the smallest nfeval with the smallest error
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C. The results of RKF4(5) and eeRKF4(5)

Figure 3: Comparison of (a) errors versus nfeval (b) errors versus cputime
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Error at the final-time nfeval
eeDOP7(8) 2.927e− 13 6502
DOP7(8) 6.685e− 12 6515
eeRKF7(8) 3.942e− 13 7360
RKF7(8) 2.143e− 11 7360
eeRKF4(5) 2.967e− 11 1.962e+ 4
RKF4(5) 8.806e− 10 1.962e+ 4

Table 5: Error and its demanded nfeval for the point corresponding to the
smallest tolerance in Fig. 3

3.3 Kepler problem

In astronomy’s problems such as Kepler problem, a long-term simulation is an
indispensable factor. Hence, we solve a two-body Kepler’s problem subject to New-
ton’s law of gravitation revolving around their center of mass, placed at the origin,
in elliptic orbits in the (q1, q2)-plane [3]. Assuming unitary masses and gravitational
constant, the dynamics of the two-body is described by the Hamiltonian function
H given by

(3.4) H(p1, p2, q1, q2) =
1

2
(p21 + p22)−

1√
q21 + q22

together with the angular momentum L, which is another invariant of the system,
described by

(3.5) L(p1, p2, q1, q2) = q1p2 − q2p1,

whose components pi, qi (i = 1, 2) satisfy the following IVP

(3.6)


p1

′(t) = −q1(q12 + q2
2)(−3/2),

p2
′(t) = −q2(q12 + q2

2)(−3/2),

q1
′(t) = p1,

q2
′(t) = p2.

We solve the system (3.6) with the initial conditions p1(0) = 0, p2(0) = 2,
q1(0) = 0.4, q2(0) = 0 on the interval [0, 100π] by varying the Atol and Rtol from
1.0e-6 to 1.0e-10. It is well known that the true solution is periodic with periodicity
2π [3]. To examine how the considered algorithms satisfy the conservation property,
we calculate the errors for the total energy H defined by (3.4) and plot the error
versus nfeval in the Fig. 4 to compare each algorithm. Also, to examine the error
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Figure 4: Comparison of Hamiltonian errors versus number of function-
evaluations for given tolerances for (a) DOP7(8) (b) RKF7(8) (c) RKF4(5)
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Figure 5: Comparison of errors of periodic solution versus number of
function-evaluations for given tolerances for (a)dop78 (b) RKF78 (c) RKF45
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behavior at the periodic point, the errors between the starting point (q1(0), q2(0)) =
(0.4, 0) and the numerical solutions at final time t = 100π obtained by EERKs and
ERKs are presented in Fig. 5.

With the same way to check the efficiency as the previous examples, we sum-
marize the results in Table 6 and 7. As shown in the Table 6, eeDOP7(8) achieves
the largest improvement about 33% in both Hamiltonian and periodicity and
eeRKF4(5) has a relatively small improvement.

nfeval for Hamiltonian nfeval for Periodic solution
eeDOP7(8) 33% 33%
eeRKF7(8) 20% 23%
eeRKF4(5) 5% 5%

Table 6: Improvement ratio for Kepler problem

Hamiltonian Error Periodic solution Error nfeval(Hamiltonian)
eeDOP7(8) 1.0e− 9.276 1.0e− 6.327 4.552e+ 4
DOP7(8) 1.0e− 7.473 1.0e− 4.502 4.552e+ 4
eeRKF7(8) 1.0e− 9.044 1.0e− 6.055 3.357e+ 4
RKF7(8) 1.0e− 7.607 1.0e− 4.641 3.362e+ 4
eeRKF4(5) 1.0e− 7.434 1.0e− 4.46 9.108e+ 4
RKF4(5) 1.0e− 7.322 1.0e− 4.325 9.102e+ 4

Table 7: Error and its demanded nfeval and cputime for the point corre-
sponding to the smallest tolerance in Fig. 4 and Fig. 5

Also, from Table 7, it can be seen that eeRKF7(8) has a similar conserva-
tion properties in Hamiltonian and the periodicity of the solution compared to
eeDOP7(8) with the smaller nfeval. One may summarize that the proposed EERK
scheme improves the existing ERK.

4. Conclusion and Further Discussion

In summary, an error embedding strategy for improving the embedded RK
(ERK) method is newly introduced. Unlike the traditional way to approximate
solutions in ERK, we suggest a methodology that contains itself the estimated error
at each integration step. Throughout several numerical results, it is shown that the
proposed scheme can be applied most existing ERKs. Especially, eeDOP7(8) gives
a striking improvement in the discussed problems. In order to fully explore the
efficiency of EERK, several extended issues are currently being pursued. One of
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them is to investigate strategies for selecting time-integration step to reduce time-
cost and to get bounded error behavior within given tolerances. The proposed
method is developed only for explicit embedded Runge-Kutta methods. Hence, the
other challenge is to extend the idea of proposed method into implicit method to
solve stiff-problem more efficiently. Additionally, the generalization of the proposed
idea will be applied to many physical problems expressed by partial differential
equations (PDEs). Results along these directions will be reported in the future.
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