DOI QR코드

DOI QR Code

A Study on the Safety Distance of Underground Structures in Asepct of Ground Vibration Velocity due to Explosions

지중 구조물의 지반 진동 안전거리 설정에 관한 현장적용연구

  • Park, Sangjin (Department of Civil Engineering & Environmental Sciences, Korea Military Academy) ;
  • Kang, Jiwon (Department of NCW, Ajou University) ;
  • Park, Young Jun (Department of Civil Engineering & Environmental Sciences, Korea Military Academy)
  • Received : 2016.05.09
  • Accepted : 2016.06.20
  • Published : 2016.07.31

Abstract

The necessity to consider stability of underground structures constructed below or adjacent ammunition depots has been increased since the expansion of urban area and construction of infrastructure. However, there are a few studies on influence of accidental explosion on underground structures. In this study, the process of assessing the stability of underground structures is suggested and its applicability is verified through the case study. AUTODYN and SPACECLAIM are used to execute the structure and geotechnical modelling, and explosion effect is simulated and vibration velocities are calculated. According to the result of this case study, it is concluded that underground structure constructed 70m below ground might be rarely influenced by the simulated explosion. The process used in this study could be used to design the underground ammunition complex and analyse the stability of underground facilities being influenced by periodical vibration.

탄약고 지하 및 주변에 시공된 지하구조물의 안정성 평가의 필요성은 도심지 및 사회기반시설의 확장으로 대두되었다. 그러나 지하구조물에 대한 우발적인 폭발의 영향에 대한 연구는 미진하다. 본 연구에서는 지하구조물의 안정성평가를 위한 방법을 제시하고 사례연구를 통해 적용성을 확인하였다. AUTODYN과 SPACECLAIM을 이용하여 구조체 및 지반모델링을 실시하였으며, 폭발효과를 모의하여 지반의 진동속도를 측정하였다. 사례연구의 결과에 따르면, 70m 지하에 설치된 지하구조물은 모의된 폭발 효과로부터의 영향이 거의 없는 것으로 판단된다. 본 연구에서 활용된 안정성평가방법은 지하형 탄약고 설계에 사용되거나, 혹은 주기적인 진동으로부터 영향하에 있는 지하구조물의 안정성을 평가하는데 활용될 수 있을 것이다.

Keywords

References

  1. ANSYS (2009). AUTODYN Manuals for nonlinear dynamic simulation, ANSYS, Pennsylvania, pp. 112-222.
  2. ANSYS (2014). SpaceClaim Guideline for 3D modeling, A SpaceClaim Document, Pennsylvania, pp. 60-152.
  3. Chun B. (2012). Geotechnical Engineering -Theory and Practice-, Goomi Publishing Company, Korea, pp. 237-268.
  4. German Standards (1993). Part 3-Structural vibrations in building, effects on structures. DIN4150, Berlin, pp. 130-152.
  5. Hwang H., Lee S., and Yang, H. (2008). "Influence of Near Field Blasting Vibration to Earth Retaining Wall." Journal of Korean Society for Rock Mechanics, 18(2), pp. 118-124.
  6. Kim J., and Cho Y. (2010). "A Study on the Proposals for Improvement of the National Emergency Management System based on Past Disaster Cases." Korean Journal of Construction Engineering and Management, KICEM, 11(5), pp. 24-33.
  7. Kim, S. (2013). "A Study on Establishment of Underground ammunition facility" Milistry of National Defense.
  8. Lee, J., Ha, I., Oh, B., and Shin, D. (2011). "The explosion vibration case of real size dam." Journal of Korean Geotechnical Society, 12(3), pp. 13-22.
  9. Ministry of labor (2011). Explosion work standard manual, Act 94-26.
  10. Ministry of Land (2007). Infrastructure and Transport, Explosion noise and vibration tolerance standard.
  11. Park Y., and Son K. (2016). "The Study on the Sustainable Sharing Plans of Military Installations for a Civil Military Co-existence." Korean Journal of Construction Engineering and Management, KICEM, 17(2), pp. 110-117. https://doi.org/10.6106/KJCEM.2016.17.2.110
  12. Son M., Jung Y., Yoo J., Hwang Y., and Moon D. (2013). "An analysis of explosion vibration standard." Geoenvironmental Engineering, 14(4), pp. 3-13.